

Etude de la contamination fongique de bioaérosols dans des habitations dégradées par la mérule (Serpula lacrymans) et les moisissures : évaluation de l'exposition humaine et impact génotoxique (MYCOAEROTOX)

Fungal profiles of bioaerosols collected in houses damaged by *Serpula lacrymans* and molds: exposure and genotoxicity assessment

Programme PRIMEQUAL 2

Rapport de fin de contrat

<u>David GARON</u>¹, Véronique ANDRE¹, Didier POTTIER¹, Jean-Philippe RIOULT¹, Alain BOURREAU², Chantal DUHAMEL³, Valérie BOUCHART⁴, Philippe VERITE⁵

Responsable scientifique: David GARON
Unité ABTE EA 4651, équipe ToxEMAC
Centre F. Baclesse
Université de Caen Basse-Normandie
david.garon@unicaen.fr

Avril 2013

Convention: Q.2-0007059 du 29/12/2009

¹ ABTE EA 4651, équipe ToxEMAC, UFR des Sciences Pharmaceutiques, Université de Caen Basse-Normandie

² Cabinet A. Bourreau, S^t Manvieu Norrey

³ Laboratoire de Microbiologie, CHU de Caen

⁴ Laboratoire Départemental Frank Duncombe, Caen

⁵ ABTE EA 4651, équipe ToxEMAC, Faculté de Médecine-Pharmacie, Université de Rouen

Table des matières

RESUMES	1
NOTES DE SYNTHESE	2
A- CONTEXTE DE L'ETUDE ET OBJECTIFS	7
B- MISE EN PLACE DE L'ETUDE ET METHODOLOGIES	9
B-1 Démarche générale	9
B-2 Volet microbiologique	11
B-3 Volet analytique	13
B-4 Volet toxicologique	18
B-5 Analyse statistique	20
C- RESULTATS	20
C-1 Description des 20 habitations enquêtées	20
C-1-1 Habitation 1	20
C-1-2 Habitation 2	
C-1-3 Habitation 3	
C-1-4 Habitation 4	
C-1-5 Habitation 5	
C-1-6 Habitation 6	
C-1-7 Habitation 7	
C-1-9 Habitation 9	
C-1-10 Habitation 10	
C-1-11 Habitation 11	
C-1-12 Habitation 12	
C-1-13 Habitation 13	
C-1-14 Habitation 14	
C-1-15 Habitation 15	
C-1-16 Habitation 16	35
C-1-17 Habitation 17	36
C-1-18 Habitation 18	
C-1-19 Habitation 19	
C-1-20 Habitation 20	39
C-2 Analyse globale des habitations enquêtées	40
C-2-1 Mesures physiques : particules, température et humidité	
C-2-1-1 Particules 2-15 µm (particules « fongiques »)	
C-2-1-2 Température	
C-2-1-3 Humidité	
C-2-1-4 Comparaison aux habitations non contaminées	
C-2-2 Identification des champignons lignivores dans l'air des habitations	
C-2-3 Identification et quantification des moisissures dans les bioaérosols	
C-2-3-1 Espèces fongiques dans les habitations	
C-2-3-2 Quantification des moisissures viables par habitation (cfu totales)	

- DISCUSSION ET VALORISATION	
C-3-2-5 Isolat produisant de l'acide mycophénolique	83
C-3-2-4 Isolats produisant de la stérigmatocystine	80
C-3-2-3 Isolat produisant de l'ochratoxine A	79
C-3-2-2 Isolat produisant de l'acide cyclopiazonique	
C-3-2 Evaluation de la mutagemente	<i>1</i> 7'
C-3-1 Evaluation du potentiel toxinogene	14 ت
-3 Etude d'isolats fongiques collectés dans les habitations	14
2 Etudo displata forminuos pollectás deve los habitations	-
C-2-7 Bilan des questionnaires santé	72
C-2-6 Etude des matériaux contaminés	
C-2-5 Recherche de l'activité mutagène à partir des bioaérosols	
C-2-4 Recherche multi-mycotoxines à partir des bioaérosols	
C-2-3-7 Comparaison aux habitations non contaminées	59
les espèces fongiques quantifiées	
quantifiées	
C-2-3-5 Etude des conditions physiques (température, humidité) sur les espèces fongiques	ر - د
espèce)	53
C-2-3-4 Quantification spécifique des espèces fongiques de moisissures par habitation (cfu p	

LISTE DES FIGURES

Figure 1. Démarche suivie au cours du projet	9
Figure 2. Protocole suivi pour l'analyse mycologique des bioaérosols	11
Figure 3. Protocole d'extraction des filtres avant analyse par CLHP-SM/SM	
Figure 4. Protocole du test d'Ames.	
Figure 5. Médianes des particules (2-15 µm) des pièces 1 et 2	42
Figure 6. Suivi du nombre de particules (2-15 µm) selon l'heure dans l'habitation 4 (pièce1)	43
Figure 7. Médianes des températures des pièces 1 et 2.	44
Figure 8. Médianes des humidités des pièces 1 et 2.	45
Figure 9. Représentation du nombre de cfu totales par litre d'air pour les habitations 2 à 20	51
Figure 10. Représentation du nombre de cfu par litre d'air en fonction du mode de prélèvement pour les	
habitations 1 à 20.	
Figure 11. Représentation du log de cfu par litre d'air en fonction de la température de mise en culture pour le	es
habitations 1 à 20.	53
Figure 12. Représentation du log de cfu d'Aspergillus versicolor par litre d'air en fonction des médianes de	
température et d'humidité dans les habitations 1 à 20.	56
Figure 13. Représentation du log de cfu d'Aspergillus fumigatus par litre d'air en fonction des médianes de	
température et d'humidité dans les habitations 1 à 20.	56
Figure 14. Représentation du log de cfu de <i>Cladosporium cladosporioides</i> par litre d'air en fonction des	
médianes de température et d'humidité dans les habitations 1 à 20	
Figure 15. Représentation du log de cfu de <i>Penicillium fellutanum</i> par litre d'air en fonction des médianes de	
température et d'humidité dans les habitations 1 à 20.	
Figure 16. Représentation du log de cfu de <i>Stachybotrys chartarum</i> par litre d'air en fonction des médianes de	
température et d'humidité dans les habitations 1 à 20.	
Figure 17. Représentation du log de cfu d'Aspergillus fumigatus par litre d'air en fonction du type de capteur.	
Figure 18. Représentation du log de cfu de <i>Cladosporium cladosporioides</i> par litre d'air en fonction du type d	
capteur et de la température de mise en culture.	
Figure 19. Représentation du log de cfu d' <i>Aureobasidium pullulans</i> par litre d'air en fonction du type de capte	
Figure 20. Exemple de chromatogramme et d'intensités de transitions MRM de l'alternariol quantifié à partir	
bioaérosols.	
Figure 21. Exemple de chromatogramme et d'intensités de transitions MRM de l'ochratoxine A quantifiée à	02
partir des bioaérosols.	63
Figure 22. Représentation de la production de mycotoxine (log de ng/g milieu) par les isolats fongiques collec	
à partir des bioaérosols.	
Figure 23. Exemple de chromatogramme obtenu après extraction d'un sporophore de <i>Serpula lacrymans</i> par l	
dichlorométhane.	

LISTE DES TABLEAUX

Tableau 1. Analyses effectuées sur les bioaérosols.	
Tableau 2. Amorces utilisées en PCR.	
Tableau 3. Composition du mélange réactionnel pour la PCR	12
Tableau 4. Programme de PCR.	12
Tableau 5. Paramètres chromatographiques	14
Tableau 6. Paramètres de source du détecteur de masse.	15
Tableau 7. Paramètres d'acquisition des transitions MRM (méthode 1).	15
Tableau 8. Paramètres d'acquisition des transitions MRM (méthode 2).	
Tableau 9. Domaines de linéarité, rendements et limites de quantification des mycotoxines recherchées dans	les
bioaérosols et les extraits fongiques	17
Tableau 10. Composition fongique des bioaérosols de l'habitation 1	21
Tableau 11. Composition fongique des bioaérosols de l'habitation 2.	22
Tableau 12. Composition fongique des bioaérosols de l'habitation 3	23
Tableau 13. Composition fongique des bioaérosols de l'habitation 4.	24
Tableau 14. Composition fongique des bioaérosols de l'habitation 5	25
Tableau 15. Composition fongique des bioaérosols de l'habitation 6	25
Tableau 16. Composition fongique des bioaérosols de l'habitation 7	26
Tableau 17. Composition fongique des bioaérosols de l'habitation 8	
Tableau 18. Composition fongique des bioaérosols de l'habitation 9	29
Tableau 19. Composition fongique des bioaérosols de l'habitation 10	30
Tableau 20. Composition fongique des bioaérosols de l'habitation 11	31
Tableau 21. Composition fongique des bioaérosols de l'habitation 12	
Tableau 22. Composition fongique des bioaérosols de l'habitation 13	
Tableau 23. Composition fongique des bioaérosols de l'habitation 14	34
Tableau 24. Composition fongique des bioaérosols de l'habitation 15	35
Tableau 25. Composition fongique des bioaérosols de l'habitation 16	36
Tableau 26. Composition fongique des bioaérosols de l'habitation 17	37
Tableau 27. Composition fongique des bioaérosols de l'habitation 18	38
Tableau 28. Composition fongique des bioaérosols de l'habitation 19	39
Tableau 29. Composition fongique des bioaérosols de l'habitation 20	40
Tableau 30. Particules collectées dans les pièces 1	
Tableau 31. Particules collectées dans les pièces 2.	
Tableau 32. Médianes des températures, humidités et nombres de particules de 2 à 15 µm dans les habitation	S
non contaminées par un champignon lignivore.	45
Tableau 33. Détection par PCR d'espèces lignivores dans l'air des habitations	46
Tableau 34. Liste des espèces identifiées (classées par occurrence).	
Tableau 35. Nombre d'espèces fongiques identifiées par habitation.	
Tableau 36. Nombre moyen de cfu totales par habitation, par pièce et selon le type de capteur	
Tableau 37. Nombre moyen de cfu/l d'air pour chaque espèce fongique quantifiée.	
Tableau 38. Effets des conditions expérimentales sur les teneurs en spores fongiques (cfu moyennes) dans l'a	
des habitations.	
Tableau 39. Nombre moyen de cfu totales/l d'air dans les habitations non contaminées.	
Tableau 40. Fréquence d'apparition et concentration moyenne (en cfu/l d'air) des espèces fongiques identifié	
dans les bioaérosols des 9 habitations non contaminées.	
Tableau 41. Mycotoxines mises en évidence dans les habitations.	
Tableau 42. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 2	
Tableau 43. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 2	
Tableau 44. Fréquence des espèces fongiques identifiées à partir des matériaux prélevés dans les pièces 1 et 2	2
des habitations	
Tableau 45. Fréquence de détection de champignon sur un matériau en fonction de sa nature	
Tableau 46. Occurrence des espèces fongiques en fonction du type de matériau.	
Tableau 47. Espèces fongiques associées à Serpula lacrymans sur matériaux contaminés	
Tableau 48. Espèces fongiques associées à Serpula himantioides sur matériaux contaminés	
Tableau 49. Espèces fongiques associées à Coniophora puteana sur matériaux contaminés	
Tableau 50. Espèces fongiques associées à <i>Donkioporia expansa</i> sur matériaux contaminés	
Tableau 51. Fréquence de détection dans les habitations des principales espèces de moisissures	
Tableau 52. Informations relatives à l'état de santé des occupants des habitations atteintes par un champignon	
lignivore	73

Tableau 53. Production de mycotoxines par les isolats fongiques collectés à partir des bioaérosols des	
habitations.	. 75
Tableau 54. Caractéristiques des isolats fongiques testés.	. 77
Tableau 55. Mutagénicité de l'isolat d'Alternaria alternata produisant de l'alternariol	. 77
Tableau 56. Mutagénicité de l'alternariol.	. 78
Tableau 57. Mutagénicité de l'isolat d'Aspergillus flavus produisant de l'acide cyclopiazonique	. 79
Tableau 58. Mutagénicité de l'isolat d'Aspergillus melleus produisant de l'ochratoxine A	. 79
Tableau 59. Mutagénicité de l'isolat d'Aspergillus melleus ne produisant pas d'ochratoxine A	. 80
Tableau 60. Mutagénicité de l'isolat d'Aspergillus versicolor producteur de stérigmatocystine	. 80
Tableau 61. Mutagénicité de l'isolat d'Emericella nidulans producteur de stérigmatocystine	. 81
Tableau 62. Mutagénicité de la stérigmatocystine.	. 82
Tableau 63. Bilan de l'évaluation de la mutagénicité (nombre de révertants par ng de mycotoxine) des isolats	
Aspergillus versicolor, Emericella nidulans et de la stérigmatocystine	. 82
Tableau 64. Résultats du test d'Ames avec l'isolat d'Eurotium repens produisant de l'acide mycophénolique.	. 83
Tableau 65. Protocole d'analyse du sporophore de Serpula lacrymans.	. 84

LISTE DES PHOTOS

Photos 1 et 2 (D. Garon). Collecte de bioaérosols au moyen de pompes portatives, compteur à particules et	
biocollecteur Coriolis [®] μ	10
Photos 3 à 5 (D. Garon). Comptage des colonies, purification et identification d'une colonie d'Aspergillus	
versicolor	11
Photo 6 (D. Garon). Sensiblité de la PCR détectant Serpula lacrymans (S1)	13
Photos 7 à 10 (D. Garon). Habitation 1	21
Photo 11 (D. Garon). Habitation 2	21
Photos 12 et 13 (D. Garon). Habitation 3	23
Photos 14 et 15 (D. Garon). Habitation 4	23
Photo 16 (D. Garon). Habitation 5.	24
Photo 17 (D. Garon). Habitation 6.	25
Photos 18 à 20 (D. Garon). Habitation 7	26
Photos 21 et 22 (D. Garon). Habitation 8	27
Photo 23 (D. Garon). Habitation 9.	28
Photos 24 à 26 (D. Garon). Habitation 10.	30
Photo 27 (D. Garon). Habitation 11.	30
Photo 28 (D. Garon). Habitation 12	31
Photo 29 (D. Garon). Habitation 13.	32
Photos 30 et 31 (D. Garon). Habitation 14	33
Photo 32 (D. Garon). Habitation 15	
Photos 33 à 35 (D. Garon). Habitation 16	35
Photos 36 et 37 (D. Garon). Habitation 17	36
Photo 38 (D. Garon). Habitation 18.	37
Photos 39 à 41 (D. Garon). Habitation 19	38
Photo 42 (D. Garon). Habitation 20.	39
Photos 43 et 44 (D. Garon). Aspergillus melleus et Eurotium repens sur milieu malt-agar (MEA)	77

Résumés

L'étude MYCOAEROTOX menée dans le cadre du programme Primequal 2 constitue d'une part la première description détaillée de la contamination fongique d'habitations dégradées par des champignons lignivores (dégradant le bois) tels que la mérule (*Serpula lacrymans*) et d'autre part l'évaluation du potentiel mutagène des bioaérosols et isolats fongiques issus de ces habitations. Les résultats de cette étude montrent que *Serpula lacrymans* est présent dans l'air de la moitié des habitations enquêtées, avec parfois d'autres espèces lignivores. L'exposition fongique apparaît d'autant plus complexe et multiple qu'elle s'accompagne de nombreuses espèces de moisissures, parmi lesquelles *Aspergillus versicolor* qui se caractérise par sa récurrence ainsi que son potentiel toxinogène (production de stérigmatocyctine) et mutagène vis-à-vis du test d'Ames. Des niveaux très variables en contaminants fongiques viables, pouvant aller de 0,01 à plus de 300 cfu par litre d'air, sont observés. Ces spores et fragments fongiques sont corrélés au nombre médian de particules entre 2 et 15 µm et dépendent aussi du mode de collecte utilisé (sur filtre ou dans du liquide). Enfin, l'exposition aux mycotoxines semble limitée puisque seulement 4 habitations enquêtées font l'objet d'une mise en évidence de mycotoxine(s), l'alternariol et/ou l'ochratoxine A, dans leurs bioaérosols, qui par ailleurs ne présentent pas d'activité mutagène.

<u>Mots clés</u>: bioaérosols, champignons lignivores, mérule (*Serpula lacrymans*), moisissures, mutagénicité, mycotoxines

The project MYCOAEROTOX, supported by the Primequal 2 program, described the fungal contamination in houses damaged by wood-rotting fungi such as *Serpula lacrymans*. This study also evaluated the mutagenicity of bioaerosols and fungal strains collected from these homes. The results showed that *Serpula lacrymans* was detected in the air for half of the homes with sometimes the co-occurrence of other ligninolytic basidiomycetes species. Many molds were also identified indicating the complexity of mycoflora in bioaerosols. Certain recurrent species like *Aspergillus versicolor* were able to produce the mycotoxin sterigmatocystin *in vitro* and showed positive results for mutagenicity. Airborne viable fungal levels were measured from 0.01 up to 300 cfu (colony forming units) per liter of air depending on the home, fungal concentrations also depended on the type of collector (with a filter or in a sterile liquid) and were significantly correlated with the median of particles between 2-15 µm in size. Only 4 houses contained mycotoxins (alternariol and/or ochratoxin A) but no mutagenic activity was found from bioaerosols.

Key-words: bioaerosols, wood-rotting fungi, Serpula lacrymans, molds, mutagenicity, mycotoxins

Notes de synthèse

Depuis quelques années, le nombre d'habitations atteintes par des champignons dégradant le bois (lignivores) est en progression, en particulier dans l'ouest de la France. Il devient ainsi nécessaire de mieux caractériser cette atteinte fongique afin de pouvoir évaluer l'exposition des habitants. Pour cela 4 principaux objectifs ont été suivis dans cette étude : décrire le profil fongique détaillé de ces habitations dégradées, évaluer l'exposition aux mycotoxines dans ces habitations, étudier la mutagénicité des bioaérosols collectés, et caractériser les isolats fongiques (potentiel toxinogène et mutagène) issus de ces habitations.

Au total 20 habitations atteintes par un champignon lignivore, essentiellement la mérule (*Serpula lacrymans*), ont été étudiées au moyen de questionnaires (habitation et santé) et de prélèvements (air et matériaux). Pour chaque habitation 2 pièces ont été expertisées : celle présentant un développement visible de champignon lignivore et une autre pièce ne présentant pas d'atteinte visible. Deux modes de collecte de bioaérosols ont été testés: sur filtre (au moyen de pompes portatives) et dans du liquide (au moyen d'un collecteur de type cyclone). Pour mener cette étude, des outils méthodologiques variés ont été développés et/ou appliqués : des techniques culturales et moléculaires de microbiologie fongique ont été mobilisées, une méthode de dosage multi-mycotoxine par CLHP-SM, ainsi qu'un test de mutagénicité (test d'Ames) ont également été utilisés.

Ce travail constitue la première étude sur les bioaérosols dans les habitations dégradées par des champignons lignivores. Pratiquement la moitié des habitations comporte des structures fongiques de champignons lignivores dans l'air. Les résultats indiquent que la contamination est principalement due à *Serpula lacrymans* mais implique aussi parfois d'autres espèces de basidiomycètes dégradant le bois comme *Donkioporia expansa*.

L'analyse de la microfonge des habitations atteintes a permis de mettre en évidence 155 espèces de moisissures, avec un nombre d'espèces identifiées par habitation allant de 15 à 37. Certaines espèces se caractérisent par leur récurrence, c'est le cas d'*Aspergillus fumigatus*, *A. versicolor* et *Penicillium fellutanum*. Des espèces cellulolytiques, comme *Trichoderma viride* et *Epicoccum purpurascens* sont également présentes.

L'étude apporte également des données quantitatives sur la contamination fongique en milieu intérieur, données encore peu nombreuses dans la littérature. Les niveaux globaux en contaminants fongiques (exprimés en unité formant colonie : cfu totales) sont variables selon les habitations, allant de 0,01 à plus de 300 cfu/l d'air ; en revanche il n'y a pas statistiquement d'effet pièce observé. Les niveaux restent supérieurs à ceux d'habitations non dégradées ainsi qu'aux niveaux d'habitations non humides décrits dans la littérature.

Parmi les espèces de moisissures récurrentes identifiées, *Aspergillus versicolor* et *Penicillium fellutanum*, s'avèrent être aussi majeurs d'un point de vue quantitatif; ce qui n'est pas le cas d'*Aspergillus fumigatus* qui présente un niveau d'exposition plus limité. Au contraire d'autres espèces

comme *Aureobasidium pullulans* ou *Exophiala moniliae* ne sont pas très fréquentes mais peuvent être présentes à des niveaux importants dans certaines habitations. Les bioaérosols d'habitations non dégradées contiennent également des espèces telles qu'*Aspergillus fumigatus* et *A. versicolor*, mais à des niveaux qui restent cependant très inférieurs.

L'exposition aux mycotoxines dans les habitations atteintes par un champignon lignivore s'avère limitée puisque seulement 4 habitations ont fait l'objet d'une détection de mycotoxine, l'alternariol et/ou l'ochratoxine A. De plus, aucune activité mutagène n'a été mise en évidence à partir des bioaérosols.

L'analyse de plus de 150 matériaux a permis d'identifier 107 espèces de moisissures, parmi lesquelles *Aspergillus versicolor*, *Cladosporium cladosporioides*, *Penicillium chrysogenum* et *P. fellutanum* qui sont présents de façon récurrente sur les matériaux des 2 pièces et également détectés dans l'air des habitations. L'espèce cellulolytique *Trichoderma viride* apparaît très fréquemment sur les matériaux de la pièce où l'atteinte par un champignon lignivore est visible ce qui montre la cohabitation et probablement l'action de moisissures cellulolytiques avec le(s) champignon(s) lignivore(s) dans la dégradation de l'habitat

Une analyse plus précise du type de matériau atteint montre que *Serpula lacrymans* est capable de se développer aussi bien sur matériau organique que minéral. Les prélèvements comportant *Serpula lacrymans* abritent également un cortège de moisissures.

L'étude du potentiel toxinogène d'isolats collectés à partir des bioaérosols montre que certains isolats ont la capacité de produire *in vitro* de fortes concentrations en mycotoxines. C'est le cas des isolats d'*Aspergillus fumigatus, A. versicolor, A. melleus, Emericella nidulans, Eurotium repens* et *Alternaria alternata*. Une évaluation de la mutagénicité de ces isolats producteurs montre que seuls les isolats produisant de la stérigmatocystine présentent une activité mutagène, qui dépend de l'espèce testée et donc probablement de son profil métabolique.

Plusieurs éléments de conclusion et des recommandations peuvent être tirées de ce travail. Tout d'abord, la présence de nombreuses espèces de moisissures dans ces habitations atteintes par un champignon lignivore, et ceci à des niveaux parfois très élevés, y compris dans la pièce ne présentant pas d'atteinte visible, ce qui montre la circulation d'éléments fongiques dans l'habitation. Les espèces les plus abondantes ne semblent pas spécifiques de ce type d'habitat hormis les espèces cellulolytiques qui pourraient alors constituer une signature de cette dégradation.

La complexité de cette contamination montre l'importance d'améliorer la recherche sur les mycotoxines en milieu intérieur (augmenter le nombre de mycotoxines quantifiées, améliorer la sensibilité de la méthode) et d'évaluer de façon plus approfondie les profils métaboliques et toxiques des moisissures identifiées.

L'étude des matériaux présentant une atteinte par un champignon lignivore montre que la contamination est parfois due à plusieurs espèces de basidiomycètes. Ceci montre l'importance d'un diagnostic précis au sein de l'habitation. Les modalités de ce diagnostic doivent être clairement

définies et ne pas se limiter à un simple examen visuel de l'habitat. Une analyse microscopique et moléculaire (identification par PCR) des échantillons prélevés est nécessaire.

D'un point de vue pratique, les constituants fongiques viables (cfu totales) sont corrélées au nombre médian de particules de 2 à 15 µm ce qui pourrait faire de cette mesure de particules un indicateur du niveau de contamination fongique dans l'habitation.

Notre étude apporte également des informations techniques sur les modes de collecte de bioaérosols en milieu intérieur. La comparaison des 2 modes de prélèvements, sur filtre et dans du liquide stérile, montre que le capteur liquide permet de recueillir davantage de structures fongiques. Cet effet est particulièrement visible pour certaines espèces fongiques comme *Cladosporium cladosporioides* et *Aureobasidium pullulans*. En revanche la collecte d'*Aspergillus fumigatus* est sensiblement meilleure à partir de filtre PTFE. Ainsi même si les 2 types de collecteurs sont complémentaires, le biocollecteur de type cyclone paraît plus adapté pour une évaluation quantitative globale de l'exposition fongique dans ces habitats dégradés. De même une température de mise en culture des échantillons à 25°C est à privilégier pour évaluer quantitativement la contamination fongique.

For some years, the number of houses damaged by wood-rotting fungi such as *Serpula lacrymans* was increased, particularly in the west of France. The purpose of this study was to characterize this fungal contamination and therefore to assess the occupant's exposure. The 4 aims of this study were: i, to describe the fungal profile of these homes; ii, to assess human exposure to mycotoxins, iii, to study the mutagenicity of bioaerosols, as well as the toxigenic and mutagenic activities of molds collected.

The study was based on the investigation of 20 damaged homes. Information on the homes' characteristics, and history and health symptoms questionnaires were collected. Air and material samples were also taken during the visit. Two rooms in each home were evaluated: one with visible damage caused by wood-rotting fungi and one without apparent damage. Two air collection methods (with a filter and in a sterile liquid) were conducted and compared. Various methodological tools were developed and performed. Cultural, molecular methods and a multi-mycotoxin technique by HPLC-MS were respectively used to quantify molds and mycotoxins. Mutagenicity was evaluated by means of the Ames test.

This is the first study on bioaerosols in homes damaged by wood-decayer fungi. About half of the houses contained wood-rotting basidiomycete fungi in air samples. The results indicated that the contamination was mainly due to *Serpula lacrymans* with sometimes the co-occurrence of other ligninolytic strains like *Donkioporia expansa*.

The analysis of molds in damaged homes showed a fungal diversity composed of 155 species of which some of them seem recurrent: *Aspergillus fumigatus*, *A. versicolor* and *Penicillium fellutanum*. Cellulolytic molds such as *Trichoderma viride* and *Epicoccum purpurascens* were also found.

In a context in which little information about fungal contamination in indoor air is available, this study provided quantitative data on molds in indoor bioaerosols. The levels of viable molds varied from 0.01 to 300 cfu (colony forming units: cfu) per liter of air according to the home, but were not different between the 2 studied rooms in the house. These levels remained higher than in non-damaged and non-damp homes.

When recurrent molds like *Aspergillus versicolor* and *Penicillium fellutanum* were also predominant from a quantitative point of view, the concentration of other species like *A. fumigatus* appeared to be weak. On the contrary some species like *Aureobasidium pullulans* or *Exophiala moniliae* were not recurrent, but could sometimes represent high concentrations in some homes. *Aspergillus fumigatus* and *A. versicolor* were also detected in non-damaged homes at low levels.

The exposure to mycotoxins was low because only 4 houses were affected by alternariol and/or ochratoxin A. In addition, mutagenicity was not observed from these contaminated bioaerosols.

More than 150 buildings materials were analyzed which allowed the determination of 107 fungal species. Among them *Aspergillus versicolor*, *Cladosporium cladosporioides*, *Penicillium chrysogenum* and *P. fellutanum* were recurrent on building materials located in damaged and non-damaged rooms and have been previously identified in bioaerosols. The frequent occurrence of the cellulolytic species *Trichoderma viride* in damaged room suggested its probable role in home degradation in cooperation with wood-rotting fungi.

An analysis of materials damaged by *Serpula lacrymans* demonstrated that this dry rot fungi can grow on organic as well as mineral components and housed many molds.

Among strains collected from bioaerosols, several fungal isolates belonging to *Aspergillus fumigatus*, *A. versicolor*, *A. melleus*, *Eurotium repens* and *Alternaria alternata* were able to produce mycotoxins on culture media. Sterigmatocystin-producing strains showed mutagenicity, which depended on the fungal species and thus probably on the metabolic profile.

Some conclusions and recommendations could be provided from this study. At first we observed a diversity of molds in buildings, sometimes at high levels and even in apparently non-damaged rooms. These findings indicated the circulation of viable fungal contaminants indoors. The detection of cellulolytic species in bioaerosols and materials could be an indication of home degradation.

The complexity of fungal contamination showed the importance to study mycotoxins as well as the metabolic and toxigenic profiles of molds isolated from indoor environments.

The analysis of materials showed that several wood-rotting basidiomycete fungi could be identified in damaged buildings. Thus a diagnosis should be more precisely defined: by both microscopic and molecular (PCR) analyses in addition to the usual visual examination.

On a technical level, viable fungal constituents (total cfu) were found to be significantly correlated with the median of particles (2-15 μ m) which could be considered as an indicator of home fungal contamination.

Our study also provided technical data on bioaerosols collection techniques. A comparison between the 2 collection methods (with a filter or in a sterile liquid) showed the better performance of the liquid system which collected more molds. This efficiency was particularly observed with species like *Cladosporium cladosporioides* or *Aureobasidium pullulans*. Although the quantification of *Aspergillus fumigatus* from the filter was better, a monitoring using a cyclonic-based liquid air collector followed by fungal cultures at 25°C would be prefer able to assess global fungal exposure in damaged buildings.

A- Contexte de l'étude et objectifs

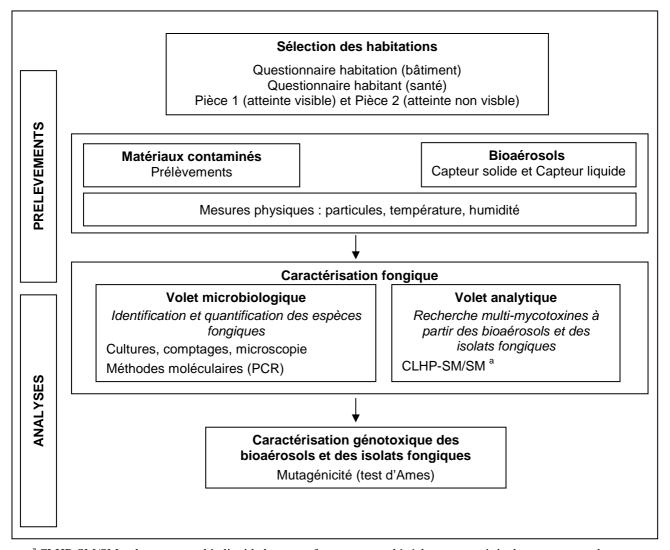
Depuis une quinzaine d'années, les cas d'atteinte d'habitations par des champignons dégradant le bois, aussi appelés champignons lignivores, tels que la mérule (Serpula lacrymans) sont en recrudescence, en particulier dans l'Ouest de la France qui est très durement touché (Rioult et Bourreau, 2003). Ce champignon qui possède un développement rapide dans des conditions d'humidité importante est très sporulant. En effet le sporophore, partie fertile de la mérule, va produire de nombreux spores microscopiques qui se dispersent dans l'atmosphère, colorant souvent en rouille orangé les supports sur lesquels elles se déposent. Ce sporophore se présente sous forme d'une crêpe ridée, plissée, orangée à ourlet blanc et mesurant 20 à 30 cm de diamètre, parfois plus. Dans les conditions optimales d'humidité et de chaleur, les spores vont se développer et donner un mycélium primaire. Lorsque 2 mycéliums primaires compatibles vont se rencontrer, ils formeront un mycélium secondaire blanc, de consistance ouateuse et qui jaunit à la lumière. Le mycélium est très actif du point de vue enzymatique et va secréter des enzymes qui dégraderont principalement la cellulose et les hémicelluloses. La dégradation de la cellulose et de l'hémicellulose du bois provoque l'apparition d'une pourriture cubique brune et sèche (dry rot fungi). Lorsque le bois est dégradé, il n'y a plus de cellulose ni d'hémicellulose (source de glucose et donc de nourriture pour la mérule) et le sporophore apparaît. Cette pourriture cubique sèche réduit dangereusement la résistance mécanique du bois d'œuvre jusqu'à la rupture des structures. Une particularité de la mérule est la production de cordons mycéliens épais d'abord blancs puis gris. Ce sont de véritables canaux transporteurs d'eau à distance qui permettent au champignon de se développer jusqu'à plus de 4 mètres de son point de départ. Une autre particularité du mycélium secondaire est la régulation de la teneur d'eau interne en secrétant des gouttelettes d'eau acide qui forment sur la masse ouateuse des larmes de couleur ambrée ; d'où le nom d'espèce : lacrimans ou lacrymans.

La présence de mérule dans des habitations s'accompagne le plus souvent de la croissance d'autres espèces fongiques, en particulier des moisissures, parmi lesquelles des espèces pourraient se révéler capables de produire des métabolites potentiellement toxiques nommés mycotoxines. Parmi tous les effets toxiques liés aux mycotoxines le risque cancérogène est démontré pour certaines, suspecté pour d'autres... Il est par exemple clairement démontré, notamment par des études expérimentales chez l'animal, que les aflatoxines se fixent sur l'ADN. Parmi les trichothécènes, groupe de mycotoxines produites par plusieurs espèces de Fusarium, une étude récente démontre que le déoxynivalénol, le nivalénol et la fusarénone X sont génotoxiques, ceci même à de faibles niveaux d'exposition (Bony et al., 2007). D'autres mycotoxines de type trichothécènes telles que les molécules produites par Stachybotrys sont connues pour leurs propriétés cytotoxiques et apoptotiques (Yang et al., 2000) mais leur potentiel génotoxique n'a pas encore été étudié. Enfin, de nombreuses mycotoxines comme les trichothécènes ou l'ochratoxine A possèdent des effets immunosuppresseurs. L'ingestion ou l'inhalation de ces mycotoxines pourrait ainsi directement affecter l'homme en contribuant à l'étiologie de certains dysfonctionnements du système immunitaire et/ou en augmentant sa sensibilité aux maladies infectieuses et aux cancers (Oswald et Comera, 1998). D'autres mycotoxines comme la gliotoxine, produite par Aspergillus fumigatus, est génotoxique, proapoptotique, immunosuppressive, cytotoxique, et capable de former des adduits à l'ADN in vitro (Eichner et al., 1988; Golden et al., 1998; Waring et al., 1988). L'alternariol, toxine produite par les micromycètes du genre *Alternaria*, a aussi révélé récemment un caractère clastogène et mutagène (Brugger et al. 2006; Lehmann et al., 2006).

L'inhalation de poussières contenant des spores fongiques et/ou fragments mycéliens est surtout connue pour être à l'origine d'affections respiratoires professionnelles ou domestiques mais demeure encore peu explorée du point de vue de leur impact génotoxique. Certains micromycètes identifiés dans l'air sont capables de produire des mycotoxines, comme l'aflatoxine B₁, la zéaralénone (Cvetnic et Pepeljnjak, 1997) ou la stérigmatocystine (Nielsen, 2003). Plusieurs travaux ont également mis en évidence des mycotoxines telles que le déoxynivalénol, l'aflatoxine B₁, l'ochratoxine A en milieu agricole mais aussi en milieu intérieur sur des sites industriels ou dans des habitations (Lappalainen et al., 1996; Selim, Juchems et Popendorf, 1998; lavicoli et al., 2002; Fischer et Dott, 2003). Malgré la mise en évidence de mycotoxines dans les bioaérosols et les poussières sur les lieux de travail et dans les habitations (Bünger et al., 2004), peu d'informations existent sur les niveaux d'exposition en moisissures et mycotoxines. De plus, l'impact réel de l'inhalation des mycotoxines sur la santé humaine reste encore controversé (IOM, 2004). En ce qui concerne les bioaérosols et le développement de cancers, quelques publications font état d'un lien potentiel entre la présence d'aflatoxine B₁ au niveau pulmonaire et la survenue de cancers pulmonaires. Dvořáčková en 1976 rapporte par exemple un cas de développement d'adénomes au sein du parenchyme pulmonaire chez un ingénieur exposé à des arachides contaminées par Aspergillus flavus.

La contamination fongique des environnements intérieurs est probablement complexe ce qui suggère des interactions possibles entre champignons et entre mycotoxines produites. En raison du manque de connaissances concernant la nature et les effets sanitaires de la contamination fongique en milieu intérieur, une approche pluridisciplinaire est proposée. Ce projet, en associant un volet expologie et un volet toxicologie, possède 4 principaux objectifs mentionnés dans le dossier initial :

- 1- décrire le profil fongique des habitations dégradées par la mérule (description et quantification des moisissures et champignons lignivores issus des bioaérosols),
 - 2- évaluer l'exposition aux mycotoxines dans ces habitations,
 - 3- caractériser les isolats fongiques issus des habitations contaminées (caractère toxinogène),
 - 4- évaluer la mutagénicité des bioaérosols et extraits d'isolats fongiques collectés.


Les données ainsi obtenues devront ainsi permettre de mieux caractériser le risque fongique des habitations touchées par la mérule, d'évaluer l'exposition humaine aux spores fongiques et mycotoxines en milieu intérieur, et de contribuer, en étudiant l'impact génotoxique des bioaérosols, à l'évaluation du risque de cancer lié à l'inhalation de spores fongiques et mycotoxines.

B- Mise en place de l'étude et méthodologies

B-1 Démarche générale

La figure 1 présente la démarche suivie dans cette étude.

Le projet prévoit l'analyse de 20 habitations, majoritairement sélectionnées dans l'Ouest de la France. Pour chaque logement, 2 pièces sont étudiées : une où la contamination par la mérule ou un autre champignon destructeur de bois est visible (nommée pièce 1) et une autre où la contamination n'est pas visible (nommée pièce 2). Dans les habitations, les surfaces contaminées (moisissures et/ou lignivores visibles) feront l'objet d'une diagnose (identification d'espèce).

^a CLHP-SM/SM : chromatographie liquide haute performance couplée à la spectrométrie de masse en tandem

Figure 1. Démarche suivie au cours du projet.

Pour chaque pièce de l'habitation, les prélèvements d'air se font en utilisant un capteur solide (collecte sur filtre stérile) et un capteur liquide (collecte cyclonique dans du liquide stérile).

Trois pompes portatives SKC 224 52TXK (Arelco) sont utilisées dans chaque pièce pour collecter les bioaérosols sur filtres (**photo 1**). Elles sont en effet munies de filtres en PTFE de 4,7 cm de diamètre

et de porosité 0,2 µm. Un compteur de particules (Grimm[®] Model 1.108, GmbH & CoKG) dans lequel est placé un filtre de même type est aussi utilisé pour quantifier et classer les particules selon leur taille. Les 3 pompes sont utilisées au débit de 2 l/min. La durée de collecte est de 3 heures. La température et l'humidité relative (HR) sont également suivies en continu (mesures toutes les 6 secondes) grâce à la sonde du compteur GRIMM[®].

Un biocollecteur Coriolis[®] μ (Bertin) est également utilisé. Il permet la collecte des bioaérosols dans du liquide stérile durant 10 minutes à un débit de 300 L/min (**photo 2**). Deux prélèvements sont réalisés dans chaque pièce.

Photos 1 et 2 (D. Garon). Collecte de bioaérosols au moyen de pompes portatives, compteur à particules et biocollecteur Coriolis $^{\circledR}$ μ .

Toutes les mesures seront effectuées à 1 m de hauteur. Le filtre d'une pompe portative (noté FM) et le liquide de collecte du Coriolis[®] (noté FC) sont destinés à l'analyse microbiologique (comptage et identification des moisissures et des espèces lignivores), le second filtre (noté FA) à l'analyse multimycotoxines (quantification des mycotoxines par CLHP-SM/SM) et le troisième filtre (noté FG) pour l'analyse génotoxicologique (évaluation de la mutagénicité par le test d'Ames). Le tableau suivant récapitule les analyses qui sont effectuées à partir des bioérosols collectés.

Tableau 1. Analyses effectuées sur les bioaérosols.

Poussières	Moisissures	Mycotoxines	Génotoxicité
(compteur à particules)	(filtre FM et liquide FC)	(filtre FA)	(filtre FG)
Evaluation du nombre	Identification des	Recherche et quantification	Nombre d'échantillons
et de la taille des particules	espèces fongiques et quantification (cfu/l)	multi-mycotoxines (ng/filtre)	mutagènes et niveaux de réponse

Les surfaces contaminées par la mérule et des moisissures font aussi l'objet d'une identification des espèces fongiques.

Précautions relatives aux prélèvements :

Pour les prélèvements d'air, 2 collecteurs coriolis différents sont utilisés (1 pour la pièce 1 et 1 pour la pièce 2) de façon à éviter les problèmes de contamination interne. De plus chaque canne d'aspiration fait l'objet d'un autoclavage (15 min, 121°C) avant chaque expertise de logement. Les prélèvements qur matériaux sont effectués au moyen de matériel stérile (écouvillons, scalpels, sachets).

Les filtres et les liquides de collecte du Coriolis[®] sont conservés à +4°C durant le transport puis à -20°C pour le filtre FA et FG, et à +4°C pour le filtre FM et le liquide FC. Les échantillons FM et FC sont traités dès le retour au laboratoire.

B-2 Volet microbiologique

Le filtre FM et le liquide FC feront l'objet d'une recherche de moisissures selon la méthode des suspensions-dilutions (figure 2 ; photos 3 à 5).

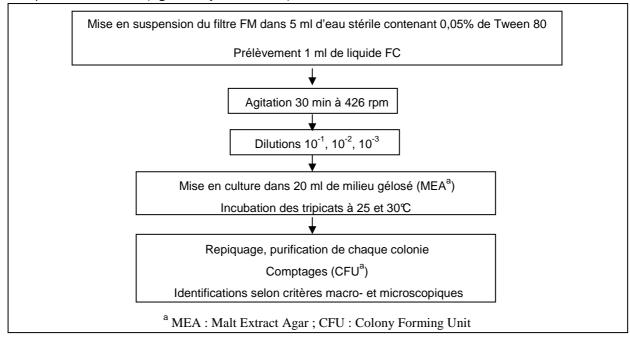
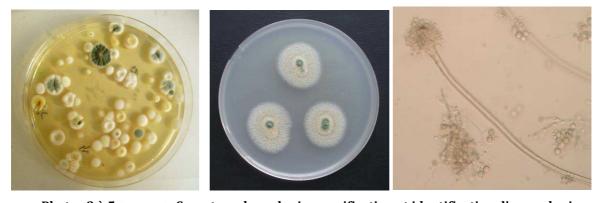



Figure 2. Protocole suivi pour l'analyse mycologique des bioaérosols.

Photos 3 à 5 (D. Garon). Comptage des colonies, purification et identification d'une colonie d'Aspergillus versicolor.

Un <u>développement méthodologique</u> a été réalisé de façon à disposer d'un outil moléculaire permettant de confirmer la présence de *Serpula lacrymans* et d'autres espèces lignivores par PCR. Ce développement est indispensable en raison des difficultés à cultiver ces espèces de Basidiomycètes sur milieu artificiel. L'extraction est réalisée à partir du liquide issu du prélèvement Coriolis[®] en adaptant la méthode précédemment développée au laboratoire (*Richard et al.*, 2009) et en utilisant le kit Nucleospin[®] Plant (Macherey-Nagel, Hoerdt).

Des témoins des espèces recherchées ont été obtenus après extraction de souches issues d'une mycothèque internationale (CBS, Pays Bas) : *Serpula lacrymans* CBS 235.33, *Serpula himantioides* CBS 302.82, *Coniophora puteana* CBS 148.32, *Donkioporia expansa* CBS 374.89.

Les amorces sélectionnées sont présentées dans le tableau 2.

Tableau 2. Amorces utilisées en PCR.

Espèces	Amorces	Séquence 5'-3'	Taille (pb ^a)	Référence
Serpula	ITS1-F	TCC-GTA-GGT-GAA-CCT-GCG-G	654	
lacrymans	SI-R	ATG-TTT-CTT-GCG-ACA-ACG-AC	034	_
Serpula	ITS1-F	TCC-GTA-GGT-GAA-CCT-GCG-G	650	-
himantioides	Sh-R	TCC-CAC-AAC-CGA-AAC-AAA-TC	630	
Coniophora	ITS1-F	TCC-GTA-GGT-GAA-CCT-GCG-G	727	Schmidt et
puteana	Cp-R	AGT-AGC-AAG-TAA-GGC-ATA-GA	121	Moreth, 2000
Donkioporia	ITS1-F	TCC-GTA-GGT-GAA-CCT-GCG-G	639	-
expansa	De-R	TCG-CCA-AAA-CGC-TTC-ACG-GT	039	_
Contrôle	ITS1-F	TCC-GTA-GGT-GAA-CCT-GCG-G		-
champignon	ITS4-R	TCC-TCC-GCT-TAT-TGA-TAT-GC	_	

^a pb : paires de bases.

Le mélange de réaction pour la PCR est présenté dans le tableau suivant :

Tableau 3. Composition du mélange réactionnel pour la PCR.

Réactif	Concentration
Tampon	1x
MgCl ₂	1.5 mM
dNTPs	0,2 mM chaque
Primers	0,5 µM chaque
Triton X-100	0,1%
Taq polymerase	2.5 U

Le programme de PCR utilisé est présenté dans le tableau suivant :

Tableau 4. Programme de PCR.

Etape	Caractéristiques
Activation	7 min, 94℃
Dénaturation	1 min, 94℃
Hybridation	1 min, 55℃
Elongation	1 min, 72℃
Nb de cycles	35
Elongation finale	7 min, 72℃

La spécificité des amorces a été testée vis-à-vis d'autres micromycètes récurrents en milieu intérieur (Aspergillus, Alternaria, Cladosporium, Epicoccum, Mucor, Penicillium, Scopulariopsis, Stachybotrys, Ulocladium). La sensibilité est de 100 pg pour Serpula lacrymans, 10 pg pour S.

himantioides et Donkioporia expansa et 1 pg pour Coniophora puteana. La photo suivante présente la sensibilité obtenue pour S. lacrymans. Les produits de PCR ont été séquencés par GATC Biotech (Mulhouse, France) afin de vérifier la pureté des témoins utilisés. L'identité de chaque témoin a ainsi pu être vérifiée.

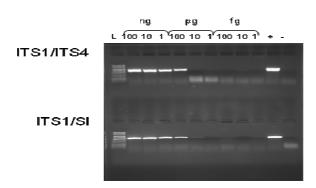


Photo 6 (D. Garon). Sensiblité de la PCR détectant Serpula lacrymans (SI).

Les prélèvements issus des surfaces contaminées (pièce 1 en particulier mais aussi pièce 2 si présence de zones avec moisissures) ont aussi fait l'objet d'une recherche de micromycètes. Les écouvillons et/ou prélèvements de matériaux sont ensemencés sur 3 types de milieux de culture : MEA, VM (MEA complémenté avec 0,01 g/l de vert de malachite) et PDAsb (milieu Potato Dextrose Agar complémenté avec de la sciure de hêtre). Plusieurs températures d'incubation ont été testées : 20, 25, 30 et 37°C. Après repiquage, purification et culture sur milieux spécifiques, les espèces fongiques sont ensuite identifiées par examens macro- et microscopiques.

Les isolats purifiés issus des bioaérosols ou des surfaces sont conservés à +4°C dans la mycothèque du laboratoire en vue d'évaluer leur potentiel toxinogène par CLHP-SM/SM.

Précautions relatives aux analyses microbiologiques :

La mise en culture des prélèvements FM et FC s'accompagnent de témoins négatifs qui consistent à suivre le même protocole à partir d'un filtre et d'un aliquot de liquide non impactés (stériles). Cette opération permet de s'assurer de l'absence de contamination durant l'analyse microbiologique.

Les résultats présentés correspondent à la moyenne des triplicats de la dilution sélectionnée pour le comptage des colonies. Conformément à la norme afnor NF V 08-059 (novembre 2002), le comptage est effectué pour les boîtes de Pétri comprenant 150 thalles (colonies non confluentes) au maximum.

B-3 Volet analytique

Un <u>développement méthodologique</u> a été réalisé avec le laboratoire départemental Frank Duncombe (LDFD14) pour la mise au point d'une méthode multi-mycotoxines en CLHP-SM/SM permettant de quantifier les mycotoxines à partir des bioaérosols (filtres FA) et à partir des cultures fongiques (évaluation du potentiel toxinogène des isolats).

Les filtres destinés à l'analyse multi-mycotoxines sont extraits selon le protocole suivant :

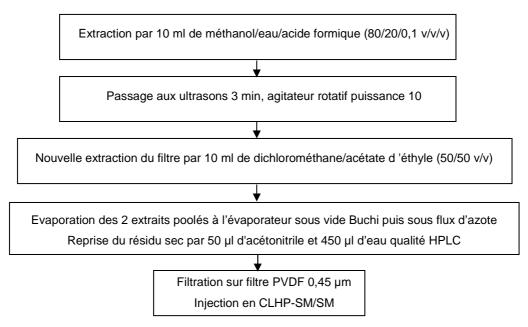


Figure 3. Protocole d'extraction des filtres avant analyse par CLHP-SM/SM.

Le système utilisé pour l'analyse est un appareil 1200 HPLC (Agilent Technologies) couplé à un spectromètre de masse à triple quadrupôle (série 6460, Agilent Technologies). Selon les mycotoxines recherchées, 2 méthodes chromatographiques sont utilisées (tableau 5). Le tableau 6 présente les paramètres appliqués au spectromètre de masse lors de l'analyse. Les tableaux 7 et 8 présentent les paramètres d'acquisition des transitions MRM (*Multiple Reaction Monitoring*).

Tableau 5. Paramètres chromatographiques.

	Méthode 1			Méthode 2			
Colonne		ZorbaxSB C18, 50*2mm, 1,7μm (Agilent Technologies)			Eclipse Plus C18, 50*2mm, 1,7μm (Agilent Technologies)		
Température du four	60°C	60°C		60°C	60°C		
Volume d'injection	10 μ1	10 μl			20 μ1		
Phase mobile	Solvant A : eau ultra pure acidifiée à 0.1% d'acide formique			Solvant A : eau ultra pure			
	Solvant B: acétonitrile		Solvant B : méthanol				
Gradient de phase	Temps(min) \ Eluants	Acétonitrile	eau ultra pure acidifiée à 0.1% d'acide formique	Temps(min) \ Eluants	Méthanol	Eau ultra pure	
Gradient de phase mobile	0	10	90	0	10	90	
	10	100	0	10	100	0	

Tableau 6. Paramètres de source du détecteur de masse.

	Méthode 1	Méthode 2
Gaz de nébulisation	Azote	Azote
	300 °C	250 °C
	10 l/min	10 l/min
Pression de nébulisation	45 psi	45 psi
Gaz de désolvatation	Azote	Azote
	400 °C	400 °C
	12 l/min	12 l/min
Voltage du capillaire	4,0 kV	Pos : 4,0 kV neg : 3,5 kV
Nozzle Voltage	300 V	300 V
EMV	300 V	350 V

Tableau 7. Paramètres d'acquisition des transitions MRM (méthode 1).

Mycotoxines (abréviation)	MM	Mode ESI	Ion précurseur (m/z)	Fragmenteur (V)	Ion fils (m/z)	Energie de collision (eV)	Temps de rétention (min)
Neosolaniol (NEO)	382,16	+	400,2 [M+NH ₄] ⁺	96	305,1* 185,1	6 14	1,722
Aflatoxine M ₁ (AFM1)	328,06	+	329,1 [M+H] ⁺	150	273,1* 259,1	24 24	2,541
Aflatoxine G ₂ (AFG2)	330,30	+	331,1 [M+H] ⁺	155	313,1* 285	24 28	2,785
Aflatoxine G ₁ (AFG1)	328,30	+	329,1 [M+H] ⁺	150	243,1* 311	28 24	3,036
Aflatoxine B ₂ (AFB2)	314,29	+	315,1 [M+H] ⁺	150	287,1* 259	24 28	3,104
Citrinine (CIT)	250,08	+	251,1 [M+H] ⁺	100	233,1* 91,1	16 50	4,158
Fumonisine C13 (FB1 C ₁₃)	755,4	+	756.4 [M+H] ⁺	182	374.1* 356.4	40 44	3,411
Fumonisine B ₁ (FB1)	723,4	+	722.4 [M+H] ⁺	185	704.3* 352.3	28 40	3,411
Acide mycophénolique (MPA)	320,24	+	321,1 [M+H] ⁺	99	303,1* 207,1	6 18	4,139
Fumonisibe B ₂ (FB2)	705,4	+	706.4 [M+H] ⁺	190	336.4* 318.3	40 44	4,169
Gliotoxine (GLIO)	326,04	+	263	130	245,1* 111,1	8 16	2,965
Aflatoxine B ₁ (AFB1)	312,06	+	313,1 [M+H] ⁺	170	285,1* 241	20 30	3,350
Diacétoxyscirpénol (DAS)	366,17	+	384,2 [M+NH ₄] ⁺	95	307,1* 105,1	8 50	3,297
Toxine T2 (T2)	466,22	+	484,2 [M+NH ₄] ⁺	100	305,1* 185,1	8 20	4,675

Ochratoxine A (OTA)	403,81	+	404,1 [M+H] ⁺	110	239 [*] 358	24 12	5,060
Fumagilline (FMG)	458,6	+	459,2 [M+H] ⁺	120	131.1 [*] 177.1	28 12	5,969
Sterigmatocystine (STERIG)	324,06	+	325,1 [M+H] ⁺	150	281 [*] 310	38 26	5 ,202
Verruculogène (VERG)	511,6	+	494,2	120	352* 255	10 26	5,553
Paxilline (PAX)	435,24	+	436,2 [M+H] ⁺	104	418,2* 182,2	6 34	6,441
Fumonisin B ₁ - ¹³ C ₃₄ (FB1-C13)	756,4	+	756.4 [M+H] ⁺	182	374.1* 356.4	40 44	3.411

^{*:} transition la plus abondante servant à quantifier

Tableau 8. Paramètres d'acquisition des transitions MRM (méthode 2).

Mycotoxines (abréviation)	MM	Mode ESI	Ion précurseur (m/z)	Fragmenteur (V)	Ion fils (m/z)	Energie de collision (eV)	Temps de rétention (min)
Patuline (PAT)	154.12	-	153 [M-H]	40	109,1* 81,1	2 6	0,927
Déoxynivalénol (DON)	296.36	+	297,1 [M+H] ⁺	100	249,1* 203,1	8 12	1,729
Deepoxydéoxynivalénol (DOM1)	280.13	+	281,1 [M+H] ⁺	85	109,1* 81,1	14 30	2,562
Fusarenon X (FUS-X)	354.14	+	355,1 [M+H] ⁺	94	337,1* 229,1	6 14	2,561
Verrucarol (VERC)	266.33	+	267,2 [M+H] ⁺	82	249,1* 231,1	6 6	3,029
3-acétyldéoxynivalenol (3AcDON)	338.35	+	339 [M+H] ⁺	100	231 [*] 279	5 5	3,432
15-acétyldéoxynivalénol (15AcDON)	338.38	+	356	100	339,1* 321	2 5	3,475
Alternariol (ALT)	258.05	-	257 [M-H]	150	215,1* 212,8	24 20	5,567
Toxine HT2 (HT2)	424.21	+	442,2 [M+NH ₄] ⁺	96	263,1* 215,1	10 10	5,924
Zéaralénone (ZEA)	318.15	-	317,1 [M-H]	155	175,1* 131,1	16 24	6,829
Déoxynivalenol- ¹³ C ₁₅ (DON C ₁₃)	311.06	+	312,1 [M+H] ⁺	100	263,1* 216,1	8 12	1,729
Zéaralénone C ₁₃ (ZEA C ₁₃)	336.23	-	335,1 [M-H]	155	185,2* 140,2	20 35	6,829

Parmi ces mycotoxines, 19 molécules ont été validées selon la norme NF-90-210 (tableau 9).

Tableau 9. Domaines de linéarité, rendements et limites de quantification des mycotoxines recherchées dans les bioaérosols et les extraits fongiques.

Mycotoxines	Domaine de Linéarité (µg/L)	Rendement (%)	LQ FILTRE (ng/filtre)	LQ EXTRAITS FONGIQUES (ng/g)
Neosolaniol (NEO)	0,1-30	101,1	0,05	0,5
Aflatoxine G ₂ (AFG2)	0,1-30	79,4	0,15	0,5
Gliotoxine (GLIO)	0,5-50	75,2	0,50	2,5
Aflatoxine G ₁ (AFG1)	0,1-30	77,1	0,15	0,5
Aflatoxine B ₂ (AFB2)	0,1-30	93,4	0,15	0,5
Diacétoxyscirpénol (DAS)	0,1-30	90,9	0,05	0,5
Aflatoxine B ₁ (AFB1)	0,1-30	79,2	0,15	0,5
Acide Mycophénolique (MPA)	0,1-30	80,2	0,15	0,5
Toxine T2 (T2)	0,1-30	83,0	0,05	0,5
Ochratoxine A (OTA)	0,1-30	76,9	0,15	0,5
Déoxynivalénol (DON)	0,3-50	67,6	0,15	1,5
Fusarenon X (FUS-X)	0,5-50	84,9	0,5	2,5
Deepoxydéoxynivalénol (DOM-1)	0,1-30	90,6	0,15	0,5
Verrucarol (VERC)	0,5-50	87,9	0,5	2,5
3-acétyldéoxynivalenol (3AcDON)	0,3-50	97,9	0,15	1,5
15-acétyldéoxynivalénol (15AcDON)	0,3-50	100,7	0,15	1,5
Alternariol (ALT)	0,3-50	64,9	0,15	1,5
Toxine HT2 (HT2)	0,3-50	100,7	0,15	1,5
Zéaralénone (ZEA)	0,1-30	56,0	0,15	0,5
·		•	•	

Les isolats fongiques collectés au cours de notre étude ont été testés en CLHP-SM/SM afin d'évaluer leur potentiel toxinogène. Les isolats sont cultivés en triplicat sur milieu MEA durant 2 semaines à 25°C. Chaque milieu de culture est ensuite carotté (3 plugs de 8 mm de diamètre). Les

plugs sont pesés et extraits par 2 ml d'acétate d'éthyle acidifié avec 1 % d'acide acétique. Après une centrifugation de 15 min à 1500 rpm, chaque extrait est évaporé sous azote et le résidu sec est repris par 0,5 ml de phase mobile puis filtré sur membrane PVDF 0,45 µm (Millex® HV) avant injection en CLHP-SM/SM. L'appareillage et les conditions chromatographiques sont celles décrites précédemment.

Précautions relatives aux analyses en CLHP-SM/SM :

La méthode d'analyse en LC/MS-MS a été validée selon la norme NF-90-210 (vérification de l'exactitude, de la linéarité). Des étalons internes (déoxynivalénol $^{13}C_{15}$, fumonisine B_1 $^{13}C_{34}$, zéaralénone C_{13}) sont intégrés dans la méthode multi-mycotoxines.

Les limites de détection et quantification ont été calculées à partir des matrices étudiées : filtres et géloses (malt-agar) dopés par une gamme de concentrations en mycotoxines. Le rendement a été déterminé à 5 et 20 µg/L à partir des matrices respectives.

Les limites de quantification (LQ) sont déterminées à partir de la linéarité puis vérifiées par dopage des matrices. Les limites de détection correspondent aux LQ divisées par 3.

Chaque séquence d'analyse comprend :

- 5 blancs
- une gamme de références (0,1 0,3 0,5 1 2 5 10 30 50 μg/L) constituée du mélange de mycotoxines standards.
- les échantillons à analyser
- une référence à 5 μg/L qui est intercalée tous les 10 échantillons pour les filtres et tous les 5 échantillons pour les extraits fongiques (plugs).
- les références à $0.1 0.3 30 50 \mu g/L$ qui terminent la séquence.

Pour chaque filtre, le résultat tient compte du rendement d'extraction et des éventuelles dilutions ; il correspond à la moyenne des triplicats. Pour les cultures fongiques (plugs), la valeur moyenne du triplicat ainsi que la valeur minimale et maximale sont présentées.

B-4 Volet toxicologique

Parallèlement à cette phase de caractérisation fongique (quantification des spores fongiques et des mycotoxines), les filtres FG sont utilisés pour la détermination de la mutagénicité au moyen du test d'Ames. Les filtres sont extraits selon le protocole décrit précédemment (**figure 3**). L'extrait sec obtenu est ensuite repris dans du DMSO puis testé selon le protocole présenté ci-dessous.

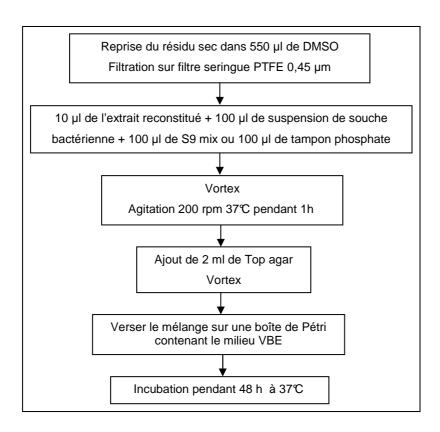


Figure 4. Protocole du test d'Ames.

Ce test utilise des souches de *Salmonella typhimurium* auxotrophes pour l'histidine. Ces souches présentent une mutation sur l'opéron histidine, les rendant dépendantes de cet acide aminé pour leur développement. Cette mutation est réversible et une souche auxotrophe pour l'histidine peut redevenir prototrophe (His+) sous l'action d'un agent mutagène. Les bactéries mutantes ainsi obtenues sont appelées « révertants ». Nous avons choisi une batterie de 3 souches bactériennes répondant à des mécanismes différents :

- la souche TA 98, sensible aux composés organiques capables de former des adduits encombrants,
- la souche TA 100, sensible aux composés alkylants,
- la souche TA 102, permettant la détection du pouvoir mutagène de composés agissant *via* un stress oxydant.

Certaines molécules ne présentent pas de caractère mutagène dans leur forme native. Mais à la suite d'une activation métabolique, elles peuvent être transformées en molécules mutagènes. Un système bactérien ne possédant pas l'arsenal enzymatique présent chez les mammifères, le système métabolique est mimé *in vitro* par l'ajout d'une fraction de foie de rat (appelé S9 mix) riche en enzymes. Cela permet de déterminer si une substance a besoin d'être métabolisée pour être mutagène.

Le nombre de clones révertants His+, ayant poussé au bout de 48 h sur le milieu de culture dépourvu d'histidine, est proportionnel au pouvoir mutagène de la substance testée. Il donne donc une réponse

quantitative permettant des études comparatives mais aussi des indications mécanistiques en fonction des souches de *S. typhimurium* sensibles à l'agent ou au mélange testé.

Après analyse par CLHP-SM/SM, des isolats fongiques se révélant producteurs de mycotoxines ont également été sélectionnés et testés vis-à-vis du test d'Ames.

B-5 Analyse statistique

Toutes les analyses statistiques ont été réalisées avec le Système Sas version 9.3 (SAS Institute Inc., Cary, NC, USA).

Les hypothèses portant sur des variables quantitatives ont été testées par une procédure glm. Il a été fait appel à des tests non paramétriques si nécessaire : corrélation des rangs de Spearman entre 2 variables quantitatives (procédure corr), comparaisons de 2 groupes par le test de Wilcoxon (procédure NPar1Way).

C- Résultats

C-1 Description des 20 habitations enquêtées

La grande majorité des habitations (18 habitations) est atteinte par *Serpula lacrymans*. Pour 2 habitations, l'analyse microscopique et moléculaire des matériaux contaminés montre que l'atteinte est due à une autre espèce de champignon lignivore : *Donkioporia expansa* (habitation 10) et *Coniophora olivacea* (habitation 20). Pour 3 habitations, l'étude des matériaux contaminés montre que l'atteinte est multiple : *Serpula lacrymans* et *Donkioporia expansa* (habitation 7), *Serpula lacrymans* et *Serpula himantioides* (habitation 12), *Serpula lacrymans*, *S. himantioides* et *Coniophora puteana* (habitation 19).

Pour chaque habitation enquêtée, sont présentés les principales caractéristiques de l'habitat, les espèces fongiques et éventuelles mycotoxines identifiées dans l'air, le nombre moyen de cfu totales par litre d'air (moyenne des 2 types de capteurs), le nombre moyen de particules totales (0,3 à 20 µm) par litre d'air ainsi que le statut mutagène ou non mutagène des bioaérosols collectés. Les données complètes concernant l'habitat et les prélèvements effectués sont toutes consignées au laboratoire dans les questionnaires.

C-1-1 Habitation 1

Il s'agit d'un immeuble collectif datant de 1920 très moyennement entretenu, présentant des phénomènes capillaires (nombreuses fissures). La pièce contaminée par la mérule est une chambre présentant de nombreuses moisissures et des spores de mérule déposés sur les surfaces (**photos 7** à 10). Le parquet bois est posé à même le sol (terre battue). Suite à un dégât des eaux intérieur survenu il y a 5 ans et malgré des travaux de réparation, l'habitat a fait l'objet d'une apparition de moisissures et de mérule selon un développement fulgurant : de <u>nombreux sporophores</u> puis un dépôt de très nombreuses spores sont obervés.

Photos 7 à 10 (D. Garon). Habitation 1.

Les surfaces sont principalement atteintes par des spores d'Aspergillus versicolor, Serpula lacrymans et Trichoderma viride.

Aspergillus versicolor est présent dans l'air des 2 pièces étudiées.

Tableau 10. Composition fongique des bioaérosols de l'habitation 1.

x x x x x x x x x x x x x x x 321 164	2	1	PIECE
x x x x x x x x x x x x x x x x x x x	Χ	Χ	Absidia corymbifera
x x x x x x x x x x x 321 164	Χ	Х	
x x x x x x x x x x x 321 164		Х	Acremonium bacillisporum
x x x x x x x x x 321 164	Х	Х	
x x x x x x x x 321 164	Χ	Х	Cladosporium cladosporioides
x x x x x x 321 164	Х	Х	Exophiala moniliae
Penicillium Penicillium Penicillium Penicillium X Phoma sp. X Serpula lac X Trichoderm Cfu totales/ Mycotoxine 103 Particul	Χ	Х	Penicillium brevicompactum
x x x x x 321 164	Х		Penicillium chrysogenum
x x x x x 321 164	Х		Penicillium crustosum
x x x x 321 164	х	х	Penicillium fellutanum
X Serpula lacry X Trichoderma X Trichoderma Cfu totales/ Mycotoxines - Mutagénicité 10 ³ Particules	х		Penicillium implicatum
X Serpula lacry X Trichoderma X Levures Cfu totales/ Mycotoxines Mutagénicité 910 ³ Particules		х	Phoma sp.
x Trichoderma X Levures Cfu totales/ Mycotoxines Mutagénicité 10 ³ Particules	х	Х	Serpula lacrymans
x 321 - 164		Х	Trichoderma viride
321 - 164	Х	Х	Levures
<u>321 164</u>			
164	291	321	
- Mut 104	-	-	Mycotoxines
10 ₃	-	-	Mutagénicité
-	159	164	10³ Particules/I

Pièce 1 : contamination visible par la mérule (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par la mérule

C-1-2 Habitation 2

Il s'agit d'un immeuble collectif datant de 1700 et réhabilité à plusieurs reprises. Le rez de chaussée est inoccupé suite à une forte présence de mérule (**photo 11**). Le sous-sol est très humide et encombré de gravats dont du bois suite à des travaux.

Photo 11 (D. Garon). Habitation 2

Les surfaces sont principalement atteintes par des spores de Serpula lacrymans.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 11. Composition fongique des bioaérosols de l'habitation 2.

2	1	PIECE
Y	Х	Acremonium bacillisporum
x	Х	Aspergillus melleus
Y	Х	Aspergillus fumigatus
Y	Х	Aspergillus versicolor
X		Botrytis cinerea
Х		Chaetomium globosum
	Х	Cladosporium sp.
X	Х	Exophiala moniliae
X		Oidiodendron griseum
Υ		Penicillium brevicompactum
X	Х	Penicillium fellutanum
X	Х	Penicillium implicatum
	Х	Penicillium phoeniceum
	Х	Penicillium puberulum
	Х	Penicillium vinaceum
1		

	artarum	6	0						
	Scopulariopsis chartarum	Serpula lacrymans	Trichoderma viride	Ulocladium sp.	S	ales/Iª	xines	énicité	연 10³ Particules/I
1 PIECE	Scopul	Serpuk	Tricho	Uloclad	Levures	o Cfu totales/l ^a	Mycotoxines	Mutagénicité	10³ Pa
1		Х	Х		Х	6	-	-	51
2	Х	Х	Х	Х	Х	6	-	-	52

Pièce 1 : contamination visible par la mérule (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par la mérule

C-1-3 Habitation 3

Il s'agit d'une maison individuelle en ossature bois sur pilotis avec isolation en ouate de cellulose, construite en 2007. Le champignon est apparu suite à une fuite aux niveaux des 2 baies vitrées. Il est <u>peu sporulant</u> et recouvert de micromycètes (**photo 12**).

Les surfaces sont principalement atteintes par des spores d'Aspergillus melleus, Mucor plumbeus, Penicillium purpurogenum et Trichoderma viride. Ces espèces sont retrouvées dans l'air de l'habitation. Les sporophores sont régulièrement infestés par des insectes (microlépidoptères) (photo 13) identifiés comme étant Nemapogon cloacella (famille des Tineidae).

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Photos 12 et 13 (D. Garon). Habitation 3.

Tableau 12. Composition fongique des bioaérosols de l'habitation 3.

x Acremonium bacillisporum x x Aspergillus melleus x x Aspergillus melleus x x Aspergillus versicolor x x Aureobasidium pullulans x x Cladosporium cladosporioides x x Cladosporium cladosporioides x x Penicillium brevicompactum x x Penicillium purpurogenum x x Penicillium verrucosum x x Penicillium viridicatum x x Penicillium viridicatum x x Penicillium viridicatum x x Trichoderma viride x x Levures c c c la totales/l a c c la lo³ Particules/l c c la 10³ Particules/l c c la	2	1	PIECE
x x x x x x x x x x x x x x x x x x x		Х	Acremonium bacillisporum
x x x x x x x x x x x x x x x x x x x		Х	Alternaria alternata
x x x x x x x x x x x x x x x x x x x	Х	Χ	
x x x x x x x x x x 14 18	Х	Х	Aspergillus versicolor
x x x x x x x x 14 18	Х	Х	Aureobasidium pullulans
x x x x x x x 14 18	Х	Х	Cladosporium cladosporioides
x x x x x x 14 18		Х	
x x x x x x 14 18	Х	Х	Mucor plumbeus
x x x x x 14 18	Х	Χ	Penicillium brevicompactum
x x x x 14 18	Х	Χ	
x x x 14 18		Х	Penicillium fellutanum
x x x 14 18	Х		Penicillium purpurogenum
x x x 14 18	Х		Penicillium verrucosum
× Trichoderma × Levures † Cfu totales/l a Mycotoxines Mutagénicité Mutagénicité	Х	Χ	Penicillium viridicatum
x 14 Cfu x 18 x 103 x		Х	
My Cfu 18	х	х	Levures
14 18 10 ³ Muts	•	•	
- Myc - 18	15	14	
- Muts	-	-	Mycotoxines
8 10 ₃	-	-	Mutagénicité
	15		

Pièce 1 : contamination visible par la mérule (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par la mérule

C-1-4 Habitation 4

Il s'agit d'une maison ancienne non modernisée, en pierre, datant de 1850. La pièce contaminée (salon/cuisine) est en mauvais état général et présente une infiltration d'eau par la cheminée. Du bois est de plus stocké sous cette cheminée. L'arrière cuisine est très fortement contaminée par des sporophores et spores de mérule. Les dépôts de spores sont généralisés (**photo 14**). La chambre adjacente au salon est également contaminée (en particulier au niveau du plancher, **photo 15**).

Photos 14 et 15 (D. Garon). Habitation 4.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Les surfaces sont principalement atteintes par Aspergillus fumigatus, A. versicolor, Cladosporium cladosporioides, Penicillium chrysogenum et P. fellutanum. Donkioporia expansa, autre espèce de champignon dégradant le bois est identifiée dans l'air.

Tableau 13. Composition fongique des bioaérosols de l'habitation 4.

ĺ		
2	1	PIECE
Х	Х	Alternaria alternata
Х	Х	Aspergillus fumigatus
Х		Aspergillus niger
Х	Х	Aspergillus versicolor
Х	Х	Aureobasidium pullulans
Х	Х	Cladosporium cladosporioides
Х	Х	Cladosporium herbarum
Х	Х	Donkiopora expansa
	Х	Epicoccum purpurascens
Х		Eurotium amstelodami
	Х	Mucor hiemalis
Х	Х	Penicillium chrysogenum
Х	Х	Penicillium fellutanum
Х		Penicillium leveillei
Х	Х	Serpula lacrymans

Pièce 1 : contamination visible par la mérule (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par la mérule

C-1-5 Habitation 5

Il s'agit d'un château datant de la fin du 18^{ème} siècle. Des travaux ont été réalisés jusqu'en 1920. La pièce atteinte est une salle d'eau avec apparition épisodique de sporophore. Lors de notre venue, nous avons noté uniquement la présence de <u>cordons mycéliens</u> derrière le lambris (**photo 16**).

Photo 16 (D. Garon). Habitation 5.

Les surfaces sont principalement atteintes par Dichobotrys sp. et Penicillium chrysogenum.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 14. Composition fongique des bioaérosols de l'habitation 5.

2	1	PIECE
Х	Х	Alternaria alternata
	Х	Arthrinium sphaeospermum
Х		Aspergillus fumigatus
Х		Aspergillus versicolor
	Х	Aureobasidium pullulans
	Х	Cladosporium cladosporioides
Х	Х	Cladosporium herbarum
	Х	Epicoccum purpurascens
Х		Exophiala moniliae
Х		Fusarium sp.
Х	Х	Penicillium brevicompactum
Х		Penicillium citreonigrum
Х	Х	Penicillium expansum
Х	Х	Penicillium fellutanum
	Х	Penicillium phoeniceum
	Х	Torulomyces sp.
Х	Х	Levures
0,02	0,04	Cfu totales/I ^a
-	-	Mycotoxines
1	-	Mutagénicité
12	11	10 ³ Particules/I
ĺ		

Pièce 1 : contamination visible par la mérule (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par la mérule

C-1-6 Habitation 6

Il s'agit d'une maison individuelle de 1964. Au cours de travaux, les occupants ont découverts du mycélium de mérule sous le parquet (**photo 17**). Les surfaces sont principalement atteintes par *Cladosporium cladosporioides* et *C. herbarum*. Ces 2 espèces sont également présentes dans les bioaérosols.

Photo 17 (D. Garon). Habitation 6.

Tableau 15. Composition fongique des bioaérosols de l'habitation 6.

Pièce 1 : contamination visible par la mérule (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par la mérule

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

C-1-7 Habitation 7

Il s'agit d'un ancien bâtiment agricole transformé en maison d'habitation. L'état général est moyen : absence de drains, fenêtres anciennes fuyardes, doublages des murs intérieurs de mauvaise qualité, toiture vétuste, pas de ventilation sous charpente, nombreuses fissures en façade... Le séjour (rez de chaussée) présente du mycélium de mérule sous les fenêtres (derrière du lambris et du polystyrène). Des <u>sporophores</u> sont également présents au niveau de l'escalier entre les pièces 1 et 2 (**photos 18 et 19**).

Les surfaces sont principalement atteintes par Cladosporium cladosporioides, Penicillium fellutanum, Serpula lacrymans. Stachybotrys chartarum est également observé en bordure des fenêtres (photo 20). La mycoflore des bioaérosols est plus complexe et comporte ces espèces. La présence de Serpula lacrymans s'accompagne de Donkioporia expansa, autre espèce lignivore. Cette espèce est également mise en évidence par PCR à partir d'un échantillon prélevé dans la pièce 1.

Photos 18 à 20 (D. Garon). Habitation 7.

Tableau 16. Composition fongique des bioaérosols de l'habitation 7.

 Alternaria alternata Aspergillus fumigatus Aspergillus niveus Aspergillus sydowii Aspergillus versicolor Aureobasidium pullulans Chaetomium sp Chaetomium sp Chaetomium sp Chaetomium purpurascens Epicoccum purpurascens Fusarium poae Penicillium bilaii Penicillium chrysogenum Penicillium expansum 	2	1	PIECE
X X	Х		Alternaria alternata
x x x x x x x x x	Х		Aspergillus fumigatus
x x x x x x x x x	Х		Aspergillus niveus
x x x x x x x		Х	Aspergillus sydowii
X X X X X X X X	Х	Х	Aspergillus versicolor
x x x x x x	Х		Aureobasidium pullulans
x x x x x x	Χ		Chaetomium sp
x x x x	Χ	Χ	Cladosporium cladosporioides
x x x	Х	Х	Cladosporium herbarum
x x	Х	Х	Donkioporia expansa
хх	Х		Epicoccum purpurascens
Х		Х	Fusarium poae
		Х	Penicillium bilaii
	Х		Penicillium chrysogenum
	Х		Penicillium expansum

X	PIECE
x x x x x x 21	Penicillium fellutanum
x x x x x 21	Penicillium variabile
x x x x x 21	Penicillium verruculosum
x x x x 21	Rhodotorula rubra
x x x 21	Serpula lacrymans
x x 21	Stachybotrys chartarum
x 21	Ulocladium chartarum
21	wures
21	
	Cfu totales/I ^a
· · Mutagé	Mycotoxines
	Mutagénicité
89 37	10 ³ Particules/I

Pièce 1 : contamination visible par *Serpula lacrymans* et *Donkioporia expansa* (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par Serpula lacrymans et Donkioporia expansa

C-1-8 Habitation 8

Il s'agit d'une maison mitoyenne datant du 18^{ème} siècle et rénovée en 2001. Du <u>mycélium et un</u> <u>sporophore</u> de mérule (**photos 21 et 22**) sont apparus en juin 2012 dans un placard de la cuisine.

Photos 21 et 22 (D. Garon). Habitation 8.

Les surfaces sont principalement atteintes par Aspergillus melleus, A. versicolor, Mucor mucedo, Rhizopus stolonifer. Aspergillus melleus, A. versicolor sont présents dans l'air; Serpula lacrymans n'est pas détecté dans l'air, en revanche Donkioporia expansa est mis en évidence. Une odeur fongique est présente dans l'habitation.

Tableau 17. Composition fongique des bioaérosols de l'habitation 8.

Ī		
2	1	PIECE
Х	Х	Aspergillus melleus
	Х	Aspergillus groupe glaucus
Х	Х	Aspergillus versicolor
Х	Х	Chaetomium globosum
Х	Х	Cladosporium cladosporioides
Х		Dactylaria sp
Х		Diplococcium sp
Х	Х	Donkioporia expansa
	Х	Penicillium atramentosum
Х	Х	Penicillium chrysogenum
Х		Penicillium crustosum
Х	Х	Penicillium fellutanum
Х	Х	Penicillium piceum
Х		Penicillium spinulosum
	Х	Rhizopus stolonifer

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Pièce 1 : contamination visible par la mérule (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par la mérule

x : présence / - : absence

C-1-9 Habitation 9

Il s'agit d'un ancien bâtiment d'habitation de corps de ferme en pierres de pays poreuses. Le crépi a été refait en 2007 (cause possible d'infiltration d'eau) et les fenêtres changées en 2005 sont mal posées (entrée d'eau). Du <u>mycélium</u> de mérule s'est développé depuis 2008 sur les murs (façade ouest) à proximité des fenêtres (**photo 23**)

Photo 23 (D. Garon). Habitation 9.

L'air des 2 pièces comporte en particulier 2 espèces toxinogènes : *Alternaria alternata* et *Aspergillus fumigatus*. Des espèces cellulolytiques comme *Arthrinium phaeospermum*, *Botrytis cinerea*, *Epicoccum purpurascens* et *Trichoderma viride* ont également été mises en évidence.

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 18. Composition fongique des bioaérosols de l'habitation 9.

2	1	PIECE
Х	Х	Alternaria alternata
Х		Arthrinium phaeospermum
Х		Aspergillus flavus
Х	Х	Aspergillus fumigatus
Х		Aspergillus groupe glaucus
	Х	Aspergillus versicolor
Х		Aureobasidium pullulans
Х	Х	Botrytis cinerea
Х		Cladosporium cladosporioides
Х		Cladosporium herbarum
Х	Х	Epicoccum purpurascens
	Х	Eupenicillium brefeldianum
Х		Eurotium amstelodami
	Х	Fusarium sp.
Χ		Fusarium verticillioides
Х	Х	Penicillium brevicompactum
Х	х	Penicillium chrysogenum
1		

ı		
2	1	PIECE
Х		Penicillium corylophilum
Х	Χ	Penicillium expansum
Х	Х	Penicillium fellutanum
	Х	Penicillium glabrum
	х	Penicillium piceum
	Х	Penicillium purpurogenum
	Х	Penicillium variabile
х	Х	Penicillium verrucosum
х	Х	Phoma sp.
Х	Х	Trichoderma viride
Х	Х	Ulocladium chartarum
	х	Verticillium lecanii
0,6	0,4	Cfu totales/l ^a
-	-	Mycotoxines
	-	Mutagénicité
143	146	10³ Particules/l

Pièce 1 : contamination visible par la mérule (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par la mérule

C-1-10 Habitation 10

Il s'agit d'une pièce d'un bâtiment récent, utilisée comme réserve de matériel (étagères en bois). Un dégât des eaux dans une pièce voisine est survenu il y a quelques années. La pièce contaminée présente un développement important de <u>mycélium et sporophores</u> de champignon lignivore (**photo 24**) qui s'avère être, après analyse moléculaire, *Donkioporia expansa*. Cette espèce a de plus été confirmée à partir des prélèvements de sporophores et mycélium effectués dans la pièce 1. Comme le montre le tableau suivant, l'air contient également de nombreuses espèces de moisissures (*Aspergillus* et *Penicillium* spp) (**photo 25**) ainsi que l'espèce toxinogène, *Stachybotrys chartarum* (**photo 26**), connue dans la littérature pour être une des causes probables du syndrome des bâtiments malsains (« Sick Building Syndrome »).

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Photos 24 à 26 (D. Garon). Habitation 10.

Tableau 19. Composition fongique des bioaérosols de l'habitation 10.

2	1	PIECE
Χ	Χ	Aspergillus fumigatus
Х	Х	Aspergillus niger
Х	Х	Aspergillus versicolor
Х		Aureobasidium pullulans
Х		Chaetomium globosum
	Х	Cladosporium cladosporioides
	Х	Donkioporia expansa
Χ	Х	Emericella nidulans
	Х	Epicoccum purpurascens
	Х	Gliocladium roseum
Χ	Х	Penicillium citreonigrum
	Х	Penicillium citrinum
Χ	Х	Penicillium fellutanum
Χ	Х	Penicillium variabile
	Х	Penicillium waksmanii
Х	Х	Stachybotrys chartarum
х	х	Trichoderma viride
7	1	Cfu totales/l ^a
ALT ^b	ALT ^b	Mycotoxines
-	-	Mutagénicité
18	22	10 ³ Particules/I

Pièce 1 : contamination visible par Donkioporia expansa (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par Donkioporia expansa

C-1-11 Habitation 11

La maison qui date de 1850 présente des infiltrations d'eau en façade (joints de briques non étanches et zinguerie défectueuse). Le plafond et le revêtement mural sont dégradés par la mérule (présence de nombreux <u>filaments</u>) (**photo 27**). Comme le montre le tableau suivant, des aspergilli potentiellement toxinogènes (*A. fumigatus*, *A. niger*, *A. versicolor*) ont été mis en évidence.

Photo 27 (D. Garon). Habitation 11.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

^b Alternariol < LQ

Tableau 20. Composition fongique des bioaérosols de l'habitation 11.

2	1	PIECE
Х	Х	Actinomucor elegans
Х	Х	Aspergillus fumigatus
	Х	Aspergillus groupe glaucus
Х	Х	Aspergillus melleus
Х	Х	Aspergillus niger
	Х	Aspergillus versicolor
Х		Chaetomium globosum
Х		Cladosporium cladosporioides
Х		Eurotium amstelodami
	Х	Paecilomyces variotii
Х	Х	Penicillium chrysogenum
Х	Х	Penicillium expansum
Х	Х	Penicillium fellutanum
	Х	Penicillium islandicum
Х	Х	Penicillium piceum

2	1	PIECE
	Χ	Penicillium spinulosum
Х		Penicillium verrucosum
	Х	Penicillium viridicatum
Х		Rhodotorula rubra
Х		Trichothecium roseum
0,04	0,04	Cfu totales/I ^a
ALT et OTA ^b	ALT et OTA ^b	Mycotoxines
-	-	Mutagénicité
49	50	10 ³ Particules/I

Pièce 2 : contamination non visible par la mérule

C-1-12 Habitation 12

Ce bâtiment d'habitation datant de 1800 a fait l'objet d'une découverte de mérule (<u>mycélium abondant et sporophores</u>) au cours de sa rénovation. Les champignons lignivores (*Serpula lacrymans* et *Serpula himantioides*) se sont développés principalement au niveau du plancher (**photo 28**). La cause probable est un ruissellement des eaux de pluie contre le bâtiment lié à surélévation de la route longeant l'habitation. Une mare est également présente à proximité du bâtiment. L'étude de la microfonge révèle la présence de 2 espèces de mérule : *Serpula lacrymans* et *Serpula himantioides*.

Photo 28 (D. Garon). Habitation 12.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

^b Alternariol et Ochratoxine A

Tableau 21. Composition fongique des bioaérosols de l'habitation 12.

	1	PIECE
Х		Aspergillus fumigatus
Х	Х	Aspergillus versicolor
	Х	Mucor mucedo
Х	Х	Paecilomyces variotii
Х	Х	Penicillium fellutanum
Х	Х	Penicillium glabrum
Х		Penicillium islandicum
Х		Penicillium rugulosum
Х		Serpula himantioides
Х	Х	Serpula lacrymans
-,	Х	Trichoderma viride
	Х	Levures
2	4	Cfu totales/I ^a
ALTb	ALTb	Mycotoxines
-		Mutagénicité
153	145	10³ Particules/I

Pièce 1 : contamination visible par *Serpula lacrymans* et *Serpula himantioides* (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par Serpula lacrymans et Serpula himantioides

C-1-13 Habitation 13

Cette habitation fait partie d'un immeuble collectif de 1920 ayant subi des dégâts des eaux successifs provenant d'une salle de bain d'un appartement du deuxième étage. L'atteinte par la mérule (<u>mycélium</u>) touche un appartement du premier étage (poutres : **photo 29**) et des parties communes (cage d'escalier). Aspergillus fumigatus est détecté dans les 2 pièces de l'habitation.

Photo 29 (D. Garon). Habitation 13.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

^b Alternariol

Tableau 22. Composition fongique des bioaérosols de l'habitation 13.

2	1	PIECE
	Χ	Aspergillus caespitosus
Х	Х	Aspergillus fumigatus
	Х	Aspergillus sydowii
	Х	Aspergillus versicolor
Х		Chaetomium crispatum
	Х	Emericella nidulans
Х	Х	Penicillium chrysogenum
	Х	Penicillium decumbens
Х	Х	Penicillium expansum
	Х	Penicillium fellutanum
Х	Х	Penicillium piceum
	Х	Penicillium spinulosum
Х		Rhizopus arrhizus
	Х	Trichoderma viride
0,01	0,02	Cfu totales/l ^a
ALTb	ALTb	Mycotoxines
-	-	Mutagénicité
118	148	10³ Particules/I

Pièce 2 : contamination non visible par la mérule

C-1-14 Habitation 14

Cette maison individuelle de 1680 est en bon état général malgré la découverte de <u>filaments</u> <u>mycéliens</u> de mérule (**photo 30**) et d'anciens sporophores (**photo 31**) s'étant développés à partir du pourtour d'une fenêtre défectueuse (infiltration). La moisissure allergène *Aureobasidium pullulans* est présente dans les 2 pièces de l'habitation.

Photos 30 et 31 (D. Garon). Habitation 14.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

 $^{^{}b}$ Alternariol < LQ

Tableau 23. Composition fongique des bioaérosols de l'habitation 14.

2	1	PIECE
Χ		Aspergillus fumigatus
	Х	Aspergillus groupe glaucus
	Х	Aspergillus versicolor
Х	Х	Aureobasidium pullulans
	Х	Cladosporium herbarum
	Х	Epicoccum purpurascens
	Х	Fusarium culmorum
	Х	Fusarium sp
Χ		Gliocladium sp
Х		Penicillium chrysogenum
	Х	Penicillium citreonigrum
Χ		Penicillium expansum
Χ	Х	Penicillium fellutanum
	Х	Penicillium glabrum
	Х	Penicillium raistrickii

2	1	1 DIECE
Х		Penicillium spinulosum
	Х	Penicillium thomii
	Х	Penicillium variabile
	Х	Pseudallescheria boydii
	Х	Rhodotorula rubra
Х		Sporothrix sp
0,03	1	Cfu totales/l ^a
-	-	Mycotoxines
-	-	Mutagénicité
87	67	10 ³ Particules/I

Pièce 2 : contamination non visible par la mérule

C-1-15 Habitation 15

Il s'agit d'une maison de 1960 présentant un sous-sol contaminé par un intense manteau de <u>filaments mycéliens</u> de mérule (**photo 32**). L'entrée d'eau a lieu en raison d'une surélévation de la voirie. L'air contient des spores d'espèces d'*Aspergillus* potentiellement toxinogènes et de nombreuses espèces de *Penicillium*.

Photo 32 (D. Garon). Habitation 15.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 24. Composition fongique des bioaérosols de l'habitation 15.

2	1	PIECE
		Absidia corymbifera
	Χ	Alternaria alternata
Χ	Χ	Aspergillus fumigatus
Х	Х	Aspergillus melleus
	Х	Aspergillus niger
Х	Х	Aspergillus versicolor
Х	Х	Cladosporium herbarum
Х		Emericella nidulans
Х		Eupenicillium brefeldianum
Х		Fusarium sp
	Х	Gliocladium roseum
Х		Nectria inventa
	Х	Penicillium brevicompactum
Χ	Х	Penicillium fellutanum
Χ	Х	Penicillium glabrum
Х		Penicillium melinii
Χ		Penicillium oxalicum

Pièce 2 : contamination non visible par la mérule

C-1-16 Habitation 16

La mérule a été découverte suite à l'affaissement du plancher ; ce dernier est atteint par des <u>filaments</u> de mérule à l'origine d'une dégradation du bois (**photos 33 et 34**). Cette maison de 1902 fait l'objet d'infiltrations d'eau (fenêtres, façade) depuis de nombreuses années. Une odeur fongique est présente dans l'habitation. Les espèces cellulolytiques *Scopulariopsis brevicaulis* et *Trichoderma viride* sont détectées dans l'air de l'habitation. D'autres pièces de l'habitation comportent des taches noires sur divers supports (papier peint,...) (**photo 35**). Il s'agit de *Cladosporium sphaerospermum*.

Photos 33 à 35 (D. Garon). Habitation 16.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 25. Composition fongique des bioaérosols de l'habitation 16.

2	1	PIECE
Х		Aspergillus fumigatus
Х		Aspergillus versicolor
	Х	Fusarium sp
Х	Х	Penicillium chrysogenum
Х	Х	Penicillium expansum
	Х	Penicillium fellutanum
Х		Penicillium olsonii
Х		Penicillium simplicissimum
	Х	Penicillium viridicatum
Х	Х	Scopulariopsis brevicaulis
	Х	Trichoderma viride
0,4	0,3	Cfu totales/l ^a
-	ı	Mycotoxines
1	ı	Mutagénicité
23	15	10 ³ Particules/I

Pièce 2 : contamination non visible par la mérule

C-1-17 Habitation 17

Le plancher et les solives de cette maison datant des années 1900 sont atteints par la mérule (<u>mycélium</u> et pourriture cubique) (**photo 36**). Des infiltrations d'eau ont été notées à partir des fenêtres (**photo 37**). Une odeur fongique est présente dans l'habitation. La microfonge est complexe renfermant des espèces aspergillaires (*Aspergillus*, *Eurotium*), des espèces pénicillaires, des espèces allergènes (*Alternaria*, *Cladosporium*, *Ulocladium*,...), des espèces cellulolytiques (*Aureobasidium*, *Trichoderma*,...).

Photos 36 et 37 (D. Garon). Habitation 17.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 26. Composition fongique des bioaérosols de l'habitation 17.

2	1	PIECE
	Х	Absidia corymbifera
Х		Absidia cylindrospora
	Х	Acremonium strictum
Х		Alternaria alternata
Х	Х	Aspergillus fumigatus
	Х	Aspergillus melleus
Х	Х	Aspergillus niger
Х	Х	Aspergillus versicolor
	Х	Aureobasidium pullulans
	Х	Botrytis cinerea
Х	Х	Cladosporium cladosporioides
Х	Х	Cladosporium macrocarpum
Х	Х	Emericella nidulans
Х	Х	Epicoccum purpurascens
Х		Eurotium herbariorum
Х	Х	Fusarium sp
Χ		Mucor mucedo
	Х	Penicillium bilaii
Χ	Х	Penicillium brevicompactum

		1 (1)
2	1	PIECE
	Х	Penicillium expansum
	Х	Penicillium fellutanum
	Х	Penicillium griseofulvum
,	Х	Penicillium miczynskii
Х	Х	Penicillium piceum
_	Х	Penicillium purpurogenum
	Х	Penicillium variabile
Х		Penicillium verrucosum
_	Х	Penicillium waksmanii
Х		Phoma leveillei
_	Х	Rhodotorula rubra
	Х	Trichoderma harzianum
Х	Х	Ulocladium chartarum
Х	Х	Levures
0,2	0,3	Cfu totales/l ^a
-	-	Mycotoxines
	-	Mutagénicité
9	14	10 ³ Particules/I
Ī		

Pièce 2 : contamination non visible par la mérule

C-1-18 Habitation 18

Cette maison de 1802, réhabilitée en 2003-2004, présente le développement de <u>sporophores</u> de mérule. La particularité de cette atteinte est l'apparition des sporophores vers l'extérieur, c'est-à-dire au niveau des joints entre les briques du mur de la cour intérieure de la maison (**photo 38**). La cause exacte de ce développement n'est pas connue. Deux espèces potentiellement pathogènes, *Aspergillus fumigatus* et *Paecilomyces variotii*, ont été détectées dans l'habitation.

Photo 38 (D. Garon). Habitation 18.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 27. Composition fongique des bioaérosols de l'habitation 18.

2	1	PIECE
Х		Arthrinium phaeospermum
Х	Х	Aspergillus fumigatus
	Х	Aspergillus sydowii
	Х	Aspergillus versicolor
	Х	Cylindrocarpon sp
	Х	Mucor mucedo
Х	Х	Paecilomyces variotii
	Х	Penicillium brevicompactum
Х	Х	Penicillium chrysogenum
	Х	Penicillium corylophilum
Х	Х	Penicillium fellutanum
	Х	Penicillium islandicum
Х	Х	Penicillium piceum
	Х	Penicillium spinulosum
	Х	Pithomyces chartarum
	Х	Rhodotorula rubra
	Х	Levures
(
0,03	0,03	Cfu totales/l ª
-	-	Mycotoxines
		Mutagénicité
62	41	10 ³ Particules/I

Pièce 2 : contamination non visible par la mérule

C-1-19 Habitation 19

Il s'agit d'un immeuble individuel datant de 1850, dans lequel du <u>mycélium et des sporophores</u> de champignon lignivore ont été découverts dans la cave confinée depuis 2004 (aérations obturées par du bois et de la mousse expansive, plafond recouvert de cartons) (**photos 39 à 41**). Serpula lacrymans est détectée dans l'air de l'habitation; les analyses moléculaires de matériaux contaminés mettent aussi en évidence 2 autres espèces de champignons lignivores : *Coniophora puteana* et Serpula himantioides. Stachybotrys chartarum est également détecté dans l'air de l'habitation.

Photos 39 à 41 (D. Garon). Habitation 19.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 28. Composition fongique des bioaérosols de l'habitation 19.

2	1	PIECE
Х		Acremonium roseogriseum
Х		Aspergillus fumigatus
Х	Х	Aspergillus melleus
	Х	Aspergillus niger
Х	Х	Aspergillus versicolor
Х	Х	Chaetomium globosum
	Х	Doratomyces purpureofuscus
Χ	Х	Oidiodendron cerealis
Х		Paecilomyces fulvus
Х		Penicillium brevicompactum
Χ	x	Penicillium chrysogenum
Χ	Х	Penicillium fellutanum
	Х	Penicillium lignorum
Х		Penicillium piceum
Χ		Penicillium purpurogenum

1 PIECE	Scopulariopsis brevicaulis	Serpula lacrymans	× Stachybotrys chartarum	Trichoderma viride	Levures		ഗ Cfu totales/l ª	Mycotoxines	Mutagénicité	ති 10³ Particules/l
		Χ	Х	Χ		l		-	-	16
2	Х		Х		Х		1	-	-	23

Pièce 1 : contamination visible par *Serpula himantioides*, *Serpula lacrymans* et *Coniophora puteana* (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par *Serpula himantioides*, *Serpula lacrymans* et *Coniophora puteana* x : présence / - : absence

C-1-20 Habitation 20

Cette maison de 1955 présente un développement de <u>mycélium</u> de champignon lignivore (*Coniophora olivacea*) au niveau des bâtis de certaines portes (partie basse) suite à un dégât des eaux (**photo 42**).

Photo 42 (D. Garon). Habitation 20.

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 29. Composition fongique des bioaérosols de l'habitation 20.

	L	
2	1	PIECE
Х		Acremonium terricola
Х		Actinomucor elegans
	Х	Amorphotheca resinae
Х		Aspergillus flavipes
Х	Х	Aspergillus fumigatus
	Х	Aspergillus sydowii
Х	Х	Aspergillus versicolor
Х		Beauveria bassiana
	Х	Botrytis cinerea
	Х	Chaetomium globosum
Х	Х	Cladosporium cladosporioides
Х		Mortierella isabellina
	Х	Penicillium brevicompactum
Х	Х	Penicillium corylophilum
	Х	Penicillium digitatum
Х		Penicillium expansum

→ PIECE	Penicillium fellutanum	Penicillium implicatum	× Penicillium islandicum	× Penicillium piceum	× Penicillium simplicissimum	Penicillium verrucosum	× Penicillium vinaceum	Phoma eupyrena	Rhizomucor pusillus	Rhizopus pusillus	Trichoderma viride	Cfu totales/l ^a	- Mycotoxines	· Mutagénicité	103 024:0:100/1
1												0,02			9
2	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	0,02	-	-	11

Pièce 1 : contamination visible par *Coniophora olivacea* (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par Coniophora olivacea

C-2 Analyse globale des habitations enquêtées

C-2-1 Mesures physiques : particules, température et humidité

Les particules, température et humidité ont fait l'objet d'un suivi régulier (mesure toute les 6 secondes) durant la période de prélèvement. Concernant les particules, nous nous sommes focalisés sur la fenêtre 2-15 µm correspondant à la taille des spores de la plupart des moisissures et champignons lignivores type mérule.

C-2-1-1 Particules 2-15 µm (particules « fongiques »)

Les tableaux suivants présentent les statistiques descriptives des particules de 2 à 15 μ m quantifiées dans les pièces 1 et 2. La **figure 5** présente les médianes des particules selon l'habitation et la pièce.

x : présence / - : absence

^a moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 30. Particules collectées dans les pièces 1.

Habitat	Pièce	n mesures	moyenne	écart type	maximum	médiane	minimum
01	1	1908	5904,59	3880,20	19757	5354	1317
02	1	1458	958,89	483,30	3056	888	292
03	1	1785	244,47	66,78	498	232	120
04	1	1753	1743,65	773,25	6879	1598	726
05	1	1797	149,68	61,73	334	143	46
06	1	1788	3953,32	1927,64	8912	3709	1363
07	1	1830	4216,62	7667,44	77739	1653	192
08	1	2082	451,73	184,87	1217	409	150
09	1	1806	7595,94	5063,30	22540	6326	1453
10	1	1801	2101,34	500,42	3716	2010	1302
11	1	1813	2116,62	2799,81	19838	1015	493
12	1	1804	1064,86	681,60	6412	974	190
13	1	1802	694,46	291,22	2777	660	276
14	1	1796	900,42	420,47	1948	716	392
15	1	1792	1149,50	1247,27	5826	635	115
16	1	1797	1378,41	737,65	5068	1124	590
17	1	1814	2297,52	2157,86	10851	1723	177
18	1	1800	496,91	153,61	1129	486	242
19	1	1907	688,11	410,01	2432	689	121
20	1	1805	611,56	450,92	2799	433	159

Tableau 31. Particules collectées dans les pièces 2.

Habitat	Pièce	n mesures	moyenne	écart type	maximum	médiane	minimum
01	2	1946	4272,14	2756,05	21225	3623	1159
02	2	1928	2340,10	2385,56	12106	1503	238
03	2	1810	244,71	49,02	419	235	161
04	2	1752	690,99	319,76	2734	644	212
05	2	1801	84,50	40,66	304	71	24
06	2	1258	927,78	608,84	2537	634	223
07	2	1821	1275,79	2019,47	17485	564	149
08	2	2080	498,80	145,57	907	490	191
09	2	1813	4661,68	3266,79	22355	4106	960
10	2	1802	862,82	383,14	2080	807	200
11	2	1822	1768,79	1112,04	7949	1588	567
12	2	1815	1706,85	1042,70	6061	1766	237
13	2	1802	556,93	197,92	951	599	205
14	2	1792	868,24	367,73	1707	713	411
15	2	1802	1230,85	1262,97	7293	756	161
16	2	1800	634,49	185,64	1125	649	196
17	2	1819	272,36	118,44	841	248	120
18	2	1805	398,00	148,80	881	391	118
19	2	1916	810,41	479,93	3025	774	196
20	2	1840	621,91	306,94	3810	533	208

Nombre médian de particules "Fongiques"

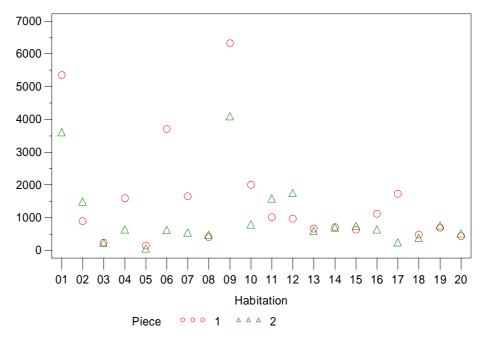


Figure 5. Médianes des particules (2-15 μ m) des pièces 1 et 2.

L'analyse statistique (ANOVA) effectuée sur les médianes des particules durant 3 périodes d'1 heure (durée totale du prélèvement : 3 h) montre que le nombre médian de particules est fonction de l'habitat (p<0,0001) et de la pièce (p=0,0173). Globalement il y a plus de particules dans les pièces 1. En revanche un modèle emboîté (pièce dans habitat) montre qu'au sein d'une habitation il n'y a pas d'effet pièce (p=0,3871).

Les liens entre particules, températures et humidités ont été recherchés, **aucune corrélation n'a pu être établie**. Les valeurs médianes, minimales ou maximales des températures et humidités ne peuvent pas expliquer le nombre de particules quantifié dans les habitations (p>0,2).

Les représentations du nombre de particules (2 à 15 µm) en fonction du temps montrent qu'il y a des pics de particules au sein des pièces étudiées. Ces bouffées de particules indiquent qu'il est important de privilégier une mesure continue plutôt qu'une mesure ponctuelle qui ne reflèterait pas les conditions d'exposition réelles. La **figure 6** montre un exemple de courbe de suivi du nombre de particules en fonction du temps.

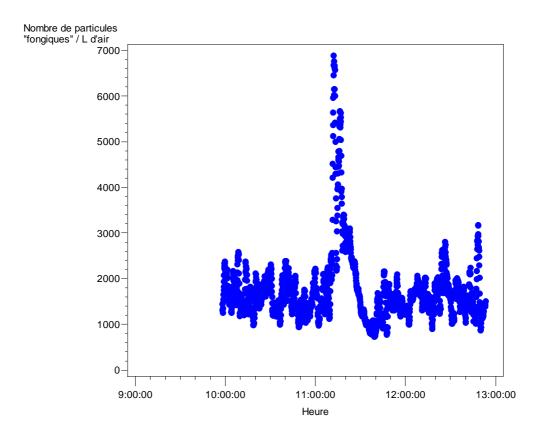


Figure 6. Suivi du nombre de particules (2-15 μ m) selon l'heure dans l'habitation 4 (pièce1).

C-2-1-2 Température

La **figure 7** présente les données descriptives concernant les mesures de température dans les habitations. Les tableaux de données sont présentés en annexe.

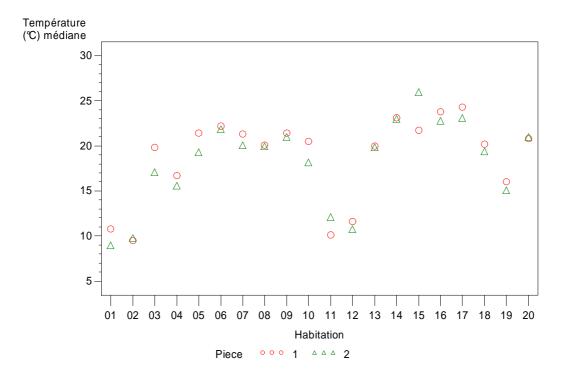


Figure 7. Médianes des températures des pièces 1 et 2.

L'analyse statistique a été effectuée sur 3 températures médianes (1 médiane par heure) afin de tenir compte de la variabilité dans les modèles ANOVA. Cette analyse montre que **la température est fonction de l'habitat, de la pièce et de la pièce au sein de chaque habitat** (interaction pièce/habitat) (p<0,001). **Les températures sont en moyenne plus élevées d'un demi-degré dans les pièces 1**.

C-2-1-3 Humidité

La **figure 8** présente les données descriptives concernant les mesures d'humidité relative (HR) dans les habitations. Les tableaux de données sont présentés en annexe.

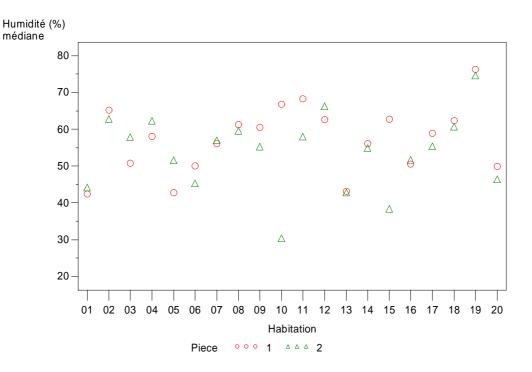


Figure 8. Médianes des humidités des pièces 1 et 2.

L'analyse statistique (ANOVA) effectuée sur 3 humidités médianes (1 médiane par heure) montre que l'humidité médiane est fonction de l'habitat, de la pièce et de la pièce au sein de chaque habitat (modèle emboîté) (p<0,001). Les humidités sont en moyenne plus élevées de 3% dans les pièces 1. La majorité des habitations a une humidité relative supérieure à 50%.

C-2-1-4 Comparaison aux habitations non contaminées

Le tableau suivant présente les données médianes des températures, humidités et particules de 2 à 15 µm pour des habitations non contaminées. Bien que 5 habitations étaient prévues dans l'étude, au total 9 ont pu être incluses et analysées.

Tableau 32. Médianes des températures, humidités et nombres de particules de 2 à 15 μm dans les habitations non contaminées par un champignon lignivore.

Habitat	Température	Humidité	Nombre de particules 2-15 μm
T1	23,7	23,6	45
T2	18,3	39,5	270
Т3	20,4	43,5	516
T4	19,1	42,3	1080
T5	21,1	53,0	253
Т6	22,7	42,1	749
Т7	22,6	40,2	257
Т8	18,5	68,3	3148
Т9	19,4	53,5	1363

Les niveaux médians en humidité relative et particules restent inférieurs à la grande majorité des habitations atteintes par un champignon lignivore. Seules les habitations T8 et T9 ont des niveaux comparables à certaines habitations atteintes ; ces 2 habitations correspondent à de vieilles maisons en pierre.

C-2-2 Identification des champignons lignivores dans l'air des habitations

Le tableau suivant récapitule la détection d'espèces fongiques lignivores (*Serpula lacrymans*, *S. himantioides*, *Donkioporia expansa*, *Coniophora puteana*) à partir des bioaérosols collectés.

Tableau 33. Détection par PCR d'espèces lignivores dans l'air des habitations.

Habitation Pièce	Serpula lacrymans	Serpula himantioides	Coniophora puteana	Donkioporia expansa	Présence de sporophore(s)	Stade sporulation	Présence de mycélium
Hab 1 - pièce 1	+	-	-	-	+ (S. lacrymans)	+	+
Hab 1 - pièce 2	+	-	-	-			
Hab 2 - pièce 1	+	-	-	-	+ (S. lacrymans)	+	-
Hab 2- pièce 2	+	-	-	-			
Hab 3 - pièce 1	-	-	-	-	+ (S. lacrymans)	-	+
Hab 3 - pièce 2	-	-	-	-			
Hab 4 - pièce 1	+	-	-	+	+ (S. lacrymans)	+	+
Hab 4 - pièce 2	+	-	-	+			
Hab 5 - pièce 1	-	-	-	-	-	-	+
Hab 5 - pièce 2	-	-	-	-			
Hab 6 - pièce 1	-	-	-	-	-	-	+
Hab 6- pièce 2	-	-	-	-			
Hab 7 - pièce 1	+	-	-	+	+ (S. lacrymans)	+	+
Hab 7 - pièce 2	+	-	-	+			
Hab 8 - pièce 1	-	-	-	+	+ (S. lacrymans) ^a	+	+
Hab 8 - pièce 2	-	-	-	+			
Hab 9 - pièce 1	-	-	=	-	-	-	+
Hab 9 - pièce 2	-	-	-	-			
Hab 10 - pièce 1	-	-	=	+	+ (D. expansa)	-	+
Hab 10 - pièce 2	-	-	-	-			
Hab 11 - pièce 1	-	-	-	-	-	-	+
Hab 11 - pièce 2	-	-	-	-			
Hab 12 - pièce 1	+	-	-	-	+ (S. lacrymans)	-	++ ^b
Hab 12 - pièce 2	+	+	-	-			
Hab 13 - pièce 1	-	-	-	-	-	-	+
Hab 13 - pièce 2	-	-	-	-			
Hab 14 - pièce 1	-	-	-	-	+ (S. lacrymans)	-	+
Hab 14 - pièce 2	-	-	-	-			

+	-	-	-	-	-	++ b
+	-	-	-			
-	-	-	-	-	-	+
-	-	-	-			
-	-	-	-	-	-	+
-	-	-	-			
-	-	-	-	+ (S. lacrymans) c	-	-
-	-	-	-			
+	-	-	-	+ (S. lacrymans)	-	++ ^b
-	-	-	-			
-	-	-	-	-	-	+
-	-	-	-			
	+	+	+	+	+	+

Pièce 1 : contamination visible par un champignon lignivore (spores et/ou mycélium et/ou sporophore)

Pièce 2 : contamination non visible par un champignon lignivore

Présence : + Absence : -

En rouge : habitations avec présence de champignon lignivore dans l'air

La recherche de champignons lignivores montre que 9 habitations sur les 20 étudiées présentent des champignons lignivores dans l'air. Parmi ces habitations, il s'agit de Serpula lacrymans dans 7 cas et de Donkioporia expansa dans 2 cas. Serpula lacrymans est détecté dans l'air dans le cas d'habitations présentant des sporophores à un stade actif (habitations 1, 2, 4, 7) c'est-à-dire sporulants mais aussi dans le cas de mycélium présent de façon proliférante (habitations 12, 15 et 19). Pour 3 habitations, aucun champignon lignivore n'est détecté dans l'air malgré la présence de sporophore, ceci peut s'expliquer par des formes non actives (sporophore âgé ou non sporulant) (habitations 3 et 14) ou atypique (situé vers l'extérieur de la pièce) (habitation 18). Ces observations et ces résultats nous permettent de conclure que l'exposition des habitants aux spores et fragments mycéliens de champignons lignivores est essentiellement dépendante du stade de développement du champignon, c'est à dire de sa capacité à produire des spores ou des filaments mycéliens dans l'habitation.

Enfin, la contamination de l'air est parfois plus complexe, en effet dans le cas d'habitations atteintes par *Serpula lacrymans*, les analyses de l'air montrent qu'une autre espèce de champignon lignivore, *Donkioporia expansa*, est également présente (habitations 4, 7 et 8). Ce basidiomycète dégradant le bois est une pourriture fibreuse s'attaquant à la lignine, son action plus discrète pourrait ainsi être complémentaire de celle de la mérule, agent de pourriture cubique qui touche essentiellement la cellulose.

Dans le cas de l'habitation 12, Serpula himantioides est également retrouvé dans l'air de la pièce 2.

Aucun champignon lignivore n'a été détecté dans l'air des habitations non contaminées.

a sporophore dans placard

b mycélium abondant

c sporophore vers l'extérieur

C-2-3 Identification et quantification des moisissures dans les bioaérosols

C-2-3-1 Espèces fongiques dans les habitations

Au total 155 espèces de moisissures ont pu être identifiées durant ce travail. 87 et 94 espèces ont respectivement été identifiées dans les pièces 1 et 2 comme le montre le tableau suivant.

Tableau 34. Liste des espèces identifiées (classées par occurrence).

Espèces	Nombre de pièces 1	Espèces	Nombre de pièces 2
Penicillium fellutanum	19	Aspergillus fumigatus	17
Aspergillus versicolor	18	Penicillium fellutanum	16
Aspergillus fumigatus	11	Aspergillus versicolor	15
Levures	11	Penicillium chrysogenum	12
Trichoderma viride	11	Cladosporium cladosporioides	10
Cladosporium cladosporioides	10	Levures	10
Penicillium brevicompactum	9	Penicillium expansum	9
Penicillium chrysogenum	9	Penicillium brevicompactum	8
Aspergillus melleus	7	Penicillium piceum	7
Epicoccum purpurascens	7	Alternaria alternata	6
Penicillium expansum	7	Aspergillus melleus	6
Penicillium piceum	7	Aureobasidium pullulans	6
Serpula lacrymans	7	Chaetomium globosum	6
Alternaria alternata	6	Cladosporium herbarum	6
Cladosporium herbarum	6	Penicillium verrucosum	6
Penicillium variabile	6	Trichoderma viride	6
Rhodotorula rubra	6	Serpula lacrymans	5
Aspergillus niger	5	Ulocladium chartarum	5
Aureobasidium pullulans	5	Aspergillus niger	4
Ulocladium chartarum	5	Epicoccum purpurascens	4
Aspergillus sydowii	4	Rhodotorula rubra	4
Chaetomium globosum	4	Donkioporia expansa	3
Donkioporia expansa	4	Emericella nidulans	3
Fusarium sp.	4	Eurotium amstelodami	3
Penicillium glabrum	4	Exophiala moniliae	3
Penicillium viridicatum	4	Fusarium sp.	3
Acremonium bacillisporum	3	Penicillium citreonigrum	3
Aspergillus groupe glaucus	3	Penicillium implicatum	3
Botrytis cinerea	3	Penicillium spinulosum	3
Emericella nidulans	3	Actinomucor elegans	2
Exophiala moniliae	3	Arthrinium phaeospermum	2
Paecilomyces variotii	3	Botrytis cinerea	2
Penicillium islandicum	3	Paecilomyces variotii	2
Penicillium spinulosum	3	Penicillium corylophilum	2
Penicillium waksmanii	3	Penicillium crustosum	2
Stachybotrys chartarum	3	Penicillium glabrum	2
Absidia corymbifera	2	Penicillium islandicum	2
Acremonium strictum	2	Penicillium purpurogenum	2
Gliocladium roseum	2	Penicillium viridicatum	2
Mucor mucedo	2	Scopulariopsis brevicaulis	2
Penicillium bilaii	2	Sporothrix sp.	2
Penicillium citreonigrum	2	Stachybotrys chartarum	2
Penicillium citrinum	2	Absidia cylindrospora	1
Penicillium corylophilum	2	Absidia repens	1
Penicillium phoeniceum	2	Acremonium bacillisporum	1
Penicillium purpurogenum	2	Acremonium roseogriseum	1
Penicillium simplicissimum	2	Acremonium strictum	1
Penicillium vinaceum	2	Acremonium terricola	1
Phoma sp.	2	Aspergillus flavus	1

Pseudallescheria boydii	2	Aspergillus flavipes	1
Absidia repens	1	Aspergillus groupe glaucus	1
Actinomucor elegans	1	Aspergillus niveus	1
Amorphotheca resinae	1	Beauveria bassiana	1
Arthrinium phaeospermum	1	Chaetomium crispatum	1
Aspergillus caespitosus	1	Chaetomium sp.	1
Cladosporium macrocarpum	1	Cladosporium macrocarpum	1
Cladosporium sp.	1	Dactylaria sp.	1
Cladosporium sphaerospermum	1	Diplococcium sp.	1
Cylindrocarpon sp.	1	Eupenicillium brefeldianum	1
Doratomyces purpureofuscus	1	Eurotium herbariorum	1
Eupenicillium brefeldianum	1	Fusarium verticillioides	1
Fusarium culmorum	1	Gliocladium sp.	1
Fusarium poae	1	Mortierella isabellina	1
Mucor hiemalis	1	Mucor mucedo	1
Mucor plumbeus	1	Mucor plumbeus	1
Oidiodendron cerealis	1	Nectria inventa	1
Penicillium atramentosum	1	Oidiodendron cerealis	1
Penicillium decumbens	1	Oidiodendron griseum	1
Penicillium digitatum	1	Paecilomyces fulvus	1
Penicillium griseofulvum	1	Penicillium citrinum	1
Penicillium implicatum	1	Penicillium leveillei	1
Penicillium lignorum	1	Penicillium melinii	1
Penicillium miczynskii	1	Penicillium olsonii	1
Penicillium puberulum	1	Penicillium oxalicum	1
Penicillium raistrickii	1	Penicillium phoeniceum	1
Penicillium thomii	1	Penicillium puberulum	1
Penicillium verrucosum	1	Penicillium rugulosum	1
Pithomyces chartarum	1	Penicillium simplicissimum	1
Rhizopus stolonifer	1	Penicillium variabile	1
Scopulariopsis brevicaulis	1	Penicillium verruculosum	1
Sistotrema brinkmannii	1	Penicillium vinaceum	1
Sporothrix sp.	1	Penicillium waksmanii	1
Talaromyces flavus	1	Phoma eupyrena	1
Torulomyces sp.	1	Phoma leveillei	1
Trichoderma harzianum	1	Phoma sp.	1
Verticillium lecanii	1	Pseudallescheria boydii	1
Verticillium leptobractum	1	Rhizopus arrhizus	1
	_	Rhizopus pusillus	1
		Rhizomucor pusillus	1
		Scopulariopsis chartarum	1
		Serpula himantioides	1
		Stemphylium sp.	1
		Trichothecium roseum	1
		Ulocladium sp.	1

Ce tableau montre que les espèces récurrentes dans les 2 pièces sont identifiques : Aspergillus fumigatus, Aspergillus versicolor et Penicillium fellutanum. Deux espèces de moisissures, Trichoderma viride et Epicoccum purpurascens sont présentes de façon plus fréquente dans les pièces 1. Ces 2 espèces sont connues pour leurs propriétés cellulolytiques et signent probabalement la dégradation de ces pièces contaminées par un champignon lignivore.

Le tableau suivant présente le nombre d'espèces de moisissures identifiées par habitation. Ce nombre d'espèces viables se situe de 15 à 37 espèces selon l'habitat.

Tableau 35. Nombre d'espèces fongiques identifiées par habitation.

Habitation	Nombre d'espèces
1	24
2	30
3	30
4	33
5	35
6	28
7	32
8	32
9	34
10	23
11	23
12	15
13	19
14	28
15	37
16	20
17	37
18	26
19	26
20	30

C-2-3-2 Quantification des moisissures viables par habitation (cfu totales)

Les cfu ont été quantifiées en tripicats pour chaque mode de prélèvement (capteur liquide ou capteur solide cf. filtre) et température de croissance (25 et 30°C). Le tableau suivant présente les nombres moyens de cfu totales quantifiées dans l'air des habitations.

Tableau 36. Nombre moyen de cfu totales par habitation, par pièce et selon le type de capteur.

Habitation	Pièce	Capteur solide Cfu totales/I d'air	Capteur liquide Cfu totales/I d'air	-	Pièce	Capteur solide Cfu totales/I d'air	Capteur liquide Cfu totales/I d'air
1	1	64,433	577,778		2	115,979	466,667
2	1	4,598	7,778		2	2,604	8,889
3	1	1,082	27,778		2	0,668	29,444
4	1	5,476	0,683		2	1,452	0,611
5	1	0,021	0,067		2	0,030	0,017
6	1	0,088	2,139		2	0,068	0,444
7	1	39,845	1,344		2	6,446	0,361
8	1	5,213	2,472		2	0,192	2,450
9	1	0,100	0,678		2	0,285	0,822
10	1	1,944	0,522		2	1,157	12,667
11	1	0,046	0,026		2	0,046	0,033
12	1	5,648	2,433		2	0,163	2,956
13	1	0,019	0,015		2	0,005	0,016

14	1	0,053	1,922		2	0,005	0,048
15	1	0,264	2,667		2	0,113	0,103
16	1	0,255	0,200		2	0,579	0,206
17	1	0,103	0,556		2	0,030	0,444
18	1	0,009	0,046		2	0,019	0,033
19	1	0,513	9,333		2	0,665	1,089
20	1	0,016	0,024	_	2	0,012	0,026
Moyenne habitations	1	6,486	31,923		2	6,526	26,366

Ces résultats montrent que l'habitation 1 comporte des teneurs en cfu totales très supérieures aux autres habitations, de 6,4 x 10⁴ à 5,7 x 10⁵ cfu/m³. Le nombre moyen de cfu totales sur l'ensemble des habitations est respectivement de l'ordre de 6 x 10³ et de 3 x 10⁴ cfu/m³ à partir du capteur solide et du capteur liquide. Ces résultats montrent la meilleure performance du capteur liquide pour le dénombrement de structures fongiques viables.

Une représentation graphique des niveaux de contamination des habitations (habitation 1 exclue) est présentée ci-dessous.

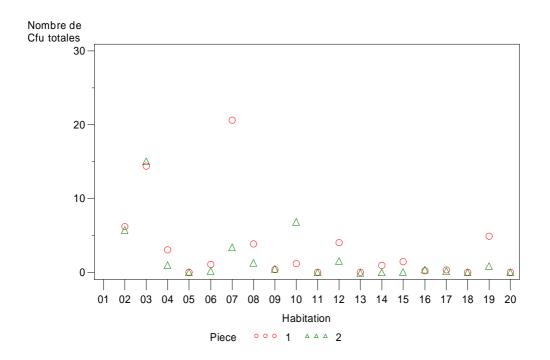


Figure 9. Représentation du nombre de cfu totales par litre d'air pour les habitations 2 à 20.

Une comparaison du nombre de cfu totales moyennes (ANOVA) montre qu'il n'y a **pas d'effet pièce** (p=0,1214) **mais en revanche un effet habitat** (p<0,0001).

Les corrélations entre les cfu totales et le nombre de particules de 2 à 15 µm (médianes), les températures (médianes) et les humidités (médianes) ont été étudiées. Les résultats montrent qu'au sein des pièces le nombre de cfu totales est corrélé de manière statistiquement significative au nombre médian de particules de 2 à 15 µm (p=0,0461 ; r=0,32). En revanche il n'existe pas de corrélation statistiquement significative entre la contamination fongique et l'humidité relative

de la pièce (p=0,1228). Concernant la température, on note une relation négative mais ce résultat est difficilement interprétable car il concerne la température ambiante le jour de l'expertise; ce lien pourrait ainsi être déterminé par le calendrier d'expertise des habitations (les plus contaminées ont par exemple pu être étudiées en hiver). D'autre part on peut supposer que la contamination fongique évolue au cours de l'année. Une réponse à cette question nécessiterait donc de réaliser des prélèvements répétés tout au long de l'année.

C-2-3-3 Nombre de cfu en fonction du protocole expérimental (type de capteur, température de mise en culture)

La **figure 10** présente le nombre de cfu par habitat, pièce et espèce en fonction du type de capteur (liquide ou solide).

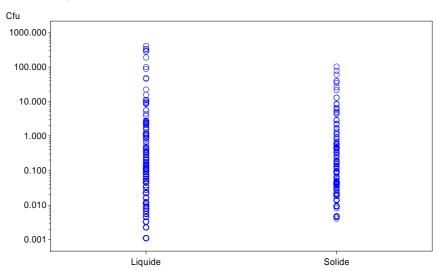


Figure 10. Représentation du nombre de cfu par litre d'air en fonction du mode de prélèvement pour les habitations 1 à 20.

L'analyse statistique (test de Wilcoxon) montre qu'il existe une **différence significative** (p<0,0001) entre les 2 types de capteurs. Le capteur liquide permet de recueillir davantage de cfu.

La **figure 11** présente le nombre moyen de cfu par litre d'air en fonction de la température de mise en culture (25 et 30°C).

Figure 11. Représentation du log de cfu par litre d'air en fonction de la température de mise en culture pour les habitations 1 à 20.

L'analyse statistique (test de Wilcoxon) montre qu'il existe une **différence significative** (p<0,0001) **entre les 2 températures de croissance**. **La température de 25℃ permet le développement de significativement plus de cfu (p<0,0001).** Cet effet température est également retrouvé en fonction du type de capteur (p<0,0001).

C-2-3-4 Quantification spécifique des espèces fongiques de moisissures par habitation (cfu par espèce)

Le tableau suivant présente le nombre moyen de cfu par litre d'air pour chaque espèce fongique. Les espèces sont classées par ordre alphabétique.

Tableau 37. Nombre moyen de cfu/l d'air pour chaque espèce fongique quantifiée.

Pièce	1			Pi	èce 2		
Espèce	Cfu/l moyen	Cfu/I max	Cfu/l min	Espèce	Cfu/I moyen	Cfu/l max	Cfu/I min
Absidia corymbifera	0,003	0,003	0,003	Absidia cylindrospora	0,025	0,025	0,025
Acremonium bacillisporum	1,683	3,222	0,144	Acremonium roseogriseum	0,008	0,008	0,008
Acremonium strictum	0,002	0,003	0,001	Acremonium terricola	0,000	0,000	0,000
Actinomucor elegans	0,000	0,000	0,000	Actinomucor elegans	0,001	0,001	0,001
Alternaria alternata	0,006	0,013	0,001	Alternaria alternata	0,017	0,032	0,003
Amorphotheca resinae	0,000	0,000	0,000	Arthrinium phaeospermum	0,004	0,006	0,002
Aspergillus caespitosus	0,001	0,001	0,001	Aspergillus flavipes	0,000	0,000	0,000
Aspergillus fumigatus	0,034	0,233	0,000	Aspergillus fumigatus	0,031	0,322	0,001
Aspergillus groupe glaucus	0,004	0,010	0,001	Aspergillus groupe glaucus	0,001	0,001	0,000
Aspergillus melleus	0,395	1,029	0,011	Aspergillus melleus	0,353	1,944	0,001
Aspergillus niger	0.002	0.003	0.000	Aspergillus niger	0,000	0,000	0,000
Aspergillus sydowii	0,002	0,006	0,000	Aspergillus niveus	0,003	0,003	0,003
Aspergillus versicolor	7,568	119,144	0,001	Aspergillus versicolor	7,586	110,252	0,001

Aureobasidium pullulans 3,26 Botrytis cinerea 0,00		0,003	Aureobasidium pullulans	4,129	14,444	0,006
•	1 0 001					
		0,001	Beauveria bassiana	0,000	0,000	0,000
Chaetomium globosum 0,00		0,000	Botrytis cinerea	0,001	0,001	0,001
Cladosporium cladosporioides 0,02		0,001	Chaetomium crispatum	0,000	0,000	0,000
Cladosporium herbarum 0,28	·	0,001	Chaetomium globosum	0,012	0,033	0,001
Cladosporium macrocarpum 0,00	0,003	0,003	Cladosporium cladosporioides	0,067	0,172	0,001
Cladosporium sphaerospermum 0,01	0,012	0,012	Cladosporium herbarum	0,044	0,097	0,002
Cylindrocarpon sp. 0,00	0,001	0,001	Cladosporium macrocarpum	0,006	0,006	0,006
Doratomyces purpureofuscus 0,08	0,083	0,083	Diplococcium sp.	0,002	0,002	0,002
Emericella nidulans 0,02	6 0,073	0,002	Emericella nidulans	0,016	0,023	0,010
Epicoccum purpurascens 0,01	9 0,050	0,001	Epicoccum purpurascens	0,016	0,028	0,003
Eupenicillium brefeldianum 0,00	3 0,003	0,003	Eupenicillium brefeldianum	0,004	0,004	0,004
Eurotium amstelodami 0.00	0.008	0.008	Eurotium amstelodami	0,002	0,003	0,001
Exophiala moniliae 4,84	3 9,407	0,278	Eurotium herbariorum	0,001	0,001	0,001
Fusarium culmorum 0,00	1 0,001	0,001	Exophiala moniliae	2,074	5,556	0,003
Fusarium poae 0.00	6 0.006	0.006	Fusarium sp.	0,002	0,003	0,001
Fusarium sp. 0,00	7 0,012	0,003	Fusarium verticillioides	0,006	0,006	0,006
Gliocladium roseum 0,00	1 0,001	0,001	Gliocladium sp.	0,001	0,001	0,001
Levures 0,21	6 0,808	0,003	Levures	0,101	0,568	0,001
Mucor mucedo 0.00	2 0.003	0.000	Mortierella isabellina	0,000	0,000	0,000
Oidiodendron cerealis 0,02	3 0,028	0,028	Mucor mucedo	0,001	0,001	0,000
Paecilomyces variotii 0,01	9 0,054	0,000	Nectria inventa	0,001	0,001	0,001
Penicillium atramentosum 0,00	6 0,006	0,006	Oidiodendron cerealis	0,003	0,003	0,003
Penicillium bilaii 0,00	3 0,014	0,003	Paecilomyces fulvus	0,016	0,016	0,016
Penicillium brevicompactum 0,00	3 0,008	0,000	Paecilomyces variotii	0,051	0,094	0,008
Penicillium chrysogenum 0,12	1 0,556	0,003	Penicillium aculeatum	0,017	0,017	0,017
Penicillium citreonigrum 0,14	5 0,275	0,014	Penicillium atramentosum	0,001	0,001	0,001
Penicillium citrinum 0,07	7 0,152	0,002	Penicillium brevicompactum	0,024	0,109	0,000
Penicillium corylophilum 0,00	2 0,003	0,000	Penicillium chrysogenum	0,024	0,121	0,000
Penicillium decumbens 0,00	1 0,001	0,001	Penicillium citreonigrum	0,009	0,023	0,001
Penicillium digitatum 0,00	0,000	0,000	Penicillium citrinum	0,004	0,003	0,003
Penicillium expansum 0,05	2 0,299	0,000	Penicillium corylophilum	0,003	0,006	0,001
Penicillium fellutanum 12,13	189,333	0,000	Penicillium crustosum	0,006	0,006	0,006
Penicillium glabrum 0,00	6 0,011	0,001	Penicillium expansum	0,063	0,378	0,000
Penicillium griseofulvum 0,00	1 0,001	0,001	Penicillium fellutanum	11,206	173,368	0,001
Penicillium implicatum 0,27	3 0,278	0,278	Penicillium glabrum	0,015	0,028	0,001
Penicillium islandicum 0,00	2 0,003	0,000	Penicillium implicatum	1,074	2,148	0,000
Penicillium lignorum 0,02	3 0,028	0,028	Penicillium islandicum	0,001	0,003	0,000
Penicillium miczynskii 0,00	7 0,007	0,007	Penicillium melinii	0,001	0,001	0,001
Penicillium piceum 0,01	2 0,043	0,000	Penicillium oxalicum	0,007	0,007	0,007
Penicillium puberulum 0,27	3 0,278	0,278	Penicillium phoeniceum	0,001	0,001	0,001
Penicillium purpurogenum 0,00	7 0,008	0,006	Penicillium piceum	0,008	0,044	0,001
Penicillium raistrickii 0,04	2 0,042	0,042	Penicillium puberulum	0,001	0,001	0,001
Penicillium simplicissimum 0,00	1 0,002	0,000	Penicillium purpurogenum	0,011	0,011	0,011
Penicillium spinulosum 0,00	1 0,001	0,000	Penicillium rugulosum	0,001	0,001	0,001
Penicillium thomii 0,00	2 0,002	0,002	Penicillium simplicissimum	0,003	0,003	0,003
Penicillium variabile 0,03	1 0,114	0,002	Penicillium spinulosum	0,002	0,003	0,001
Penicillium verrucosum 0,01	1 0,011	0,011	Penicillium variabile	0,028	0,028	0,028
Penicillium vinaceum 0,21		0,001	Penicillium verrucosum	0,003	0,008	0,000

Penicillium viridicatum	0,073	0,278	0,001	Penicillium verruculosum	0,014	0,014	0,014
Penicillium waksmanii	0,072	0,210	0,001	Penicillium vinaceum	0,001	0,001	0,001
Phoma sp.	0,031	0,031	0,031	Penicillium viridicatum	0,030	0,058	0,001
Pithomyces chartarum	0,000	0,000	0,000	Penicillium waksmanii	0,005	0,005	0,005
Pseudallescheria boydii	0,007	0,010	0,003	Phoma eupyrena	0,002	0,002	0,002
Rhodotorula rubra	0,010	0,032	0,003	Phoma sp.	0,028	0,028	0,028
Scopulariopsis brevicaulis	0,012	0,012	0,012	Pseudallescheria boydii	0,017	0,017	0,017
Sporothrix sp.	0,033	0,033	0,033	Rhizomucor pusillus	0,000	0,000	0,000
Stachybotrys chartarum	0,109	0,156	0,056	Rhizopus arrhizus	0,000	0,000	0,000
Torulomyces sp.	0,001	0,001	0,001	Rhizopus pusillus	0,000	0,000	0,000
Trichoderma harzianum	0,002	0,002	0,002	Rhodotorula rubra	0,016	0,031	0,004
Trichoderma viride	0,030	0,114	0,000	Scopulariopsis brevicaulis	0,006	0,006	0,006
Trichothecium roseum	0,000	0,000	0,000	Scopulariopsis chartarum	0,278	0,278	0,278
Ulocladium chartarum	0,014	0,022	0,001	Sporothrix sp.	0,007	0,011	0,002
Verticillium lecanii	0,089	0,089	0,089	Stachybotrys chartarum	0,009	0,012	0,005
Verticillium leptobractum	0,006	0,006	0,006	Stemphylium sp.	0,003	0,003	0,003
				Trichoderma viride	0,058	0,280	0,000
				Trichothecium roseum	0,001	0,001	0,001
				Ulocladium chartarum	0,123	0,368	0,001

Cfu/l moyen : moyenne des valeurs des cfu dans les pièces 1 ou 2 où l'espèce est présente (moyenne calculée à partir des 2 types de capteurs)

Cfu/l min : la plus petite valeur de cfu dans les pièces 1 ou 2 où l'espèce est présente. Cfu/l max : la plus grande valeur de cfu dans les pièces 1 ou 2 où l'espèce est présente.

En rouge : espèce quantifiée à une valeur moyenne supérieure à 1 cfu/l d'air.

Ces résultats nous permettent de faire plusieurs remarques :

- Aspergillus versicolor et Penicillium fellutanum, 2 espèces récurrentes dans les 2 pièces étudiées sont également prédominantes d'un point de vue quantitatif. En revanche, Aspergillus fumigatus, malgré sa présence dans la majorité des pièces étudiées, n'est pas une espèce majoritaire d'un point de vue quantitatif; ceci suggère un faible niveau d'exposition pour ce micromycète.
- Certaines espèces, peu fréquentes, peuvent cependant représenter des niveaux de cfu élevés dans quelques habitations: c'est le cas d'*Acremonium bacillisporum*, d'*Aureobasidium pullulans*, ou d'*Exophiala moniliae* pour les pièces 1 et 2.

C-2-3-5 Etude des conditions physiques (température, humidité) sur les espèces fongiques quantifiées.

Cette étude a été réalisée sur les espèces fongiques majeures en termes d'occurrence et de potentiel allergène ou toxinogène décrit dans la littérature. Les espèces suivantes ont été étudiées :

Aspergillus fumigatus, Aspergillus melleus, Aspergillus versicolor, Cladosporium cladosporioides, Cladosporium herbarum, levures, Penicillium brevicompactum, Penicillium chrysogenum, Penicillium expansum, Penicillium fellutanum, Penicillium piceum, Stachybotrys chartarum, Trichoderma viride.

Les figures suivantes présentent quelques exemples; l'ensemble des résultats est présenté en annexe.

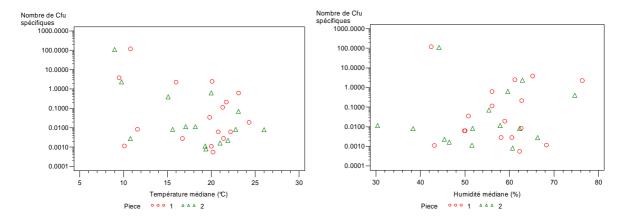


Figure 12. Représentation du log de cfu d'*Aspergillus versicolor* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

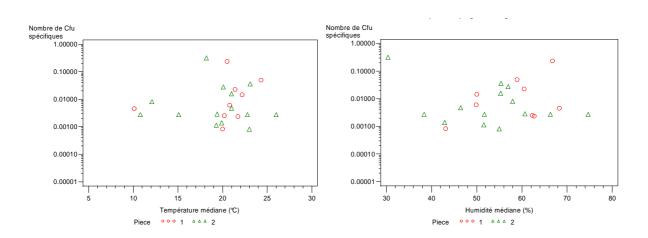


Figure 13. Représentation du log de cfu d'*Aspergillus fumigatus* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

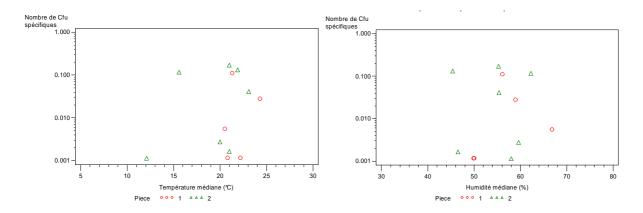


Figure 14. Représentation du log de cfu de *Cladosporium cladosporioides* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

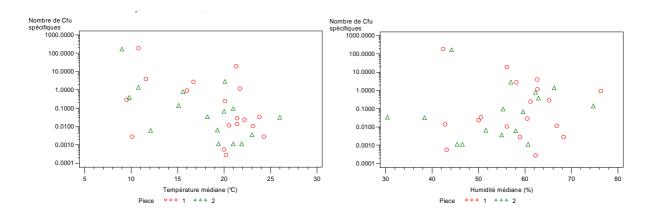


Figure 15. Représentation du log de cfu de *Penicillium fellutanum* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

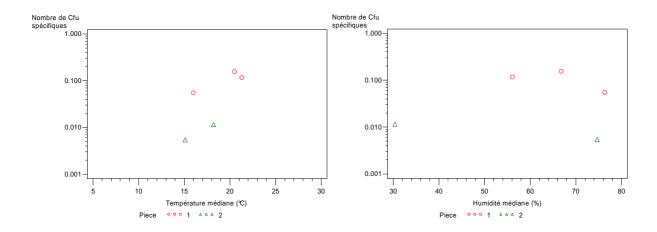


Figure 16. Représentation du log de cfu de *Stachybotrys chartarum* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

Ces graphiques montrent que des espèces fongiques viables appartenant aux genres Aspergillus, Cladosporium, Penicillium sont présentes dans l'air sur une large gamme de température et d'humidité relative. Des espèces thermotolérantes comme Aspergillus fumigatus peuvent même être retrouvées pour des températures inférieures à 20°C. Concernant Stachybotrys chartarum, malgré sa faible fréquence, sa présence est essentiellement remarquée pour des humidités relatives importantes.

C-2-3-6 Etude des conditions expérimentales (type de capteur, température de croissance) sur les espèces fongiques quantifiées.

L'effet des conditions expérimentales a été étudié sur 8 espèces fongiques d'intérêt c'est-à-dire potentiellement toxinogènes et/ou allergènes.

Le tableau suivant synthétise les résultats de cette analyse (test de Wilcoxon).

Tableau 38. Effets des conditions expérimentales sur les teneurs en spores fongiques (cfu moyennes) dans l'air des habitations.

Espèce fongique	Effet type de capteur			Effet temp	érature de cr	oissance
	Solide	Liquide		25℃	30℃	
	Moyenne	Moyenne	р	Moyenne	Moyenne	р
	Cfu/I	Cfu/I		Cfu/I	Cfu/l	
Aspergillus versicolor	4,3757	10,7780	0,2465	10,7470	4,4066	0,0236*
Aspergillus fumigatus	0,0418	0,0223	0,0101*	0,0311	0,0329	0,9265
Aspergillus melleus	0,1776	0,5673	0,9185	0,4653	0,2796	0,7874
Trichoderma viride	0,0548	0,0268	0,8777	0,0453	0,0363	0,2797
Cladosporium cladosporioides	0,0006	0,1021	0,0256*	0,1022	0,0005	0,0020*
Cladosporium herbarum	0,0057	0,3404	0,3716	0,3451	0,0010	0,0011*
Stachybotrys chartarum	0,1125	0,0256	0,2470	0,0289	0,1092	0,0823
Aureobasidium pullulans	0,0008	7,4911	0,0001*	6,0420	1,4499	0,8060

^{*} différence statistiquement significative

Les figures suivantes présentent quelques exemples; l'ensemble des graphiques est en annexe.

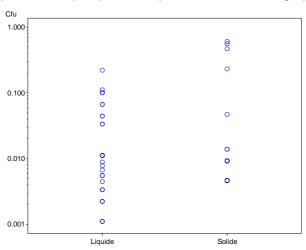


Figure 17. Représentation du log de cfu d'Aspergillus fumigatus par litre d'air en fonction du type de capteur.

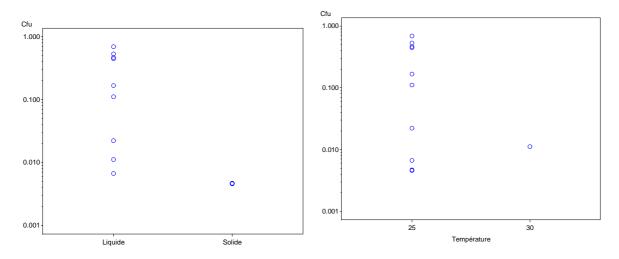


Figure 18. Représentation du log de cfu de *Cladosporium cladosporioides* par litre d'air en fonction du type de capteur et de la température de mise en culture.

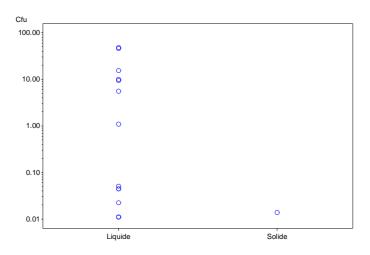


Figure 19. Représentation du log de cfu d'*Aureobasidium pullulans* par litre d'air en fonction du type de capteur.

Nous avons démontré précédemment que le capteur liquide permettait de recueillir davantage de cfu totales que le capteur solide. Ceci est également statistiquement significatif pour Cladosporium cladosporioides et Aureobasidium pullulans. En revanche, pour Aspergillus fumigatus, le capteur solide paraît plus adapté (différence statistiquement significative). Concernant la température de mise en culture des échantillons collectés, 25°C semble être celle à privilégier, des différences statistiquement significatives sont en effet observées pour A. versicolor, C. cladosporioides et C. herbarum.

C-2-3-7 Comparaison aux habitations non contaminées

Les tableaux suivants présentent l'inventaire, le nombre total de cfu et les nombres de cfu par espèces identifiées à partir des 9 habitations non contaminées.

Tableau 39. Nombre moyen de cfu totales/l d'air dans les habitations non contaminées.

Habitation	Cfu totales/l d'air ^a
T1	0,01262
T2	0,095463
T3	0,015362
T4	0,047037
T5	0,01875
T6	0,005893
T7	0,008426
T8	0,023028
Т9	0,019537

^a Moyenne calculée à partir des 2 types de capteurs (liquide et solide)

Tableau 40. Fréquence d'apparition et concentration moyenne (en cfu/l d'air) des espèces fongiques identifiées dans les bioaérosols des 9 habitations non contaminées.

Espèces	Nombre d'habitations	Concentration moyenne en cfu/l d'air ^a
Aspergillus fumigatus	9	0,00053
Aspergillus versicolor	5	0,00006
Penicillium chrysogenum	5	0,00095
Penicillium expansum	5	0,00028
Penicillium piceum	4	0,00028
Rhodotorual rubra	4	0,00021
Aspergillus caespitosus	3	0,00150
Emericella nidulans	3	0,00213
Penicillium fellutanum	3	0,00201
Penicillium rugulosum	3	0,00102
Aspergillus melleus	2	0,00014
Penicillium spinulosum	3	0,00009
Chaetomium globosum	2	0,00014
Cladosporium cladosporioides	2	0,00014
Levures	2	0,00153
Penicillium brevicompactum	2	0,00028
Penicillium glabrum	2	0,00014
Penicillium islandicum	2	0,00028
Pestalotia sp	2	0,00014
Phoma sp	2	0,00069
Ulocladium chartarum	2	0,00058
Absidia glauca	1	0,00028
Acremonium strictum	1	0,00028
Actinomucor elegans	1	0,00028
Arthrinium phaeospermum	1	0,00056
Aspergillus candidus	1	0,00232
Aspergillus flavus	1	0,00028
Aspergillus niveus	1	0,00116
Aspergillus terreus	1	0,00231
Doratomyces stemonitis	1	0,00028
Eurotium amstelodami	1	0,00028
Fusarium sp.	1	0,00200
Penicillium atramentosum	1	0,00233
Penicillium brunneum	1	0,00361
Penicillium citreonigrum	1	0,00139
Penicillium citrinum	1	0,00056
Penicillium crustosum	1	0,00634
Penicillium griseofulvum	1	0,00028
Penicillium implicatum	1	0,00083
Penicillium puberulum	1	0,00232
Penicillium purpurogenum	1	0,02426
Penicillium roqueforti	1	0,00056
Penicillium waksmanii	1	0,00250
Stachybotrys chartarum	1	0,00167
Trichoderma viride	1	0,00028
Trichurus spiralis	1	0,00056

^a Moyenne calculée à partir des 2 types de capteurs (liquide et solide)

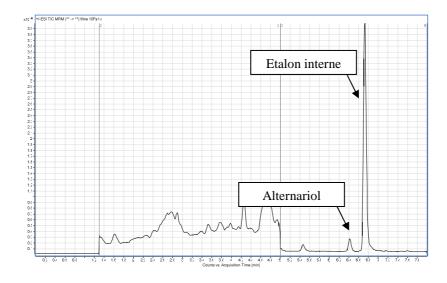
Le nombre moyen de cfu totales ne dépasse pas 0,1 cfu/l d'air, il reste très en deça de la moyenne des cfu totales des habitations dégradées par un champignon lignivore. Parmi les 51 espèces identifiées, on retrouve des espèces également mises en évidence de façon

récurrente dans les habitations atteintes telles qu'Aspergillus fumigatus et A. versicolor. On note cependant que ces 2 espèces aspergillaires détectées dans les habitations non contaminées sont présentes en quantité très inférieure dans les habitations non dégradées : respectivement 58 et 100 000 fois moins que dans les pièces non contaminées des habitations atteintes par un champignon lignivore (pièces 2). L'espèce cellulolytique, *Trichoderma viride*, n'est présente que dans une seule habitation non contaminée.

C-2-4 Recherche multi-mycotoxines à partir des bioaérosols

Les filtres ayant collecté les bioaérosols ont été analysés selon la méthode multi-mycotoxines (20 mycotoxines recherchées) décrite précédemment. Le tableau suivant résume les résultats des 20 habitations. Aucune mycotoxine n'a été détectée dans les habitations non contaminées.

Tableau 41. Mycotoxines mises en évidence dans les habitations.


Habitations	Pièces	Mycotoxine détectée	Concentration (ng/filtre)
1 à 9	1 et 2	-	-
10	1	Alternariol	< LQ ^a
10	2	Alternariol	< LQ ^a
11	1	Alternariol	0,295
		Ochratoxine A	0,335
11	2	Alternariol	0,180
		Ochratoxine A	0,150
12	1	Alternariol	0,179
12	2	Alternariol	0,155
13	1	Alternariol	< LQ ^a
13	2	Alternariol	0,153
14 à 20	1 et 2	-	-

⁻ aucune mycotoxine détectée

Seulement 4 habitations ont fait l'objet d'une mise en évidence de mycotoxine. L'alternariol apparaît comme la mycotoxine la plus fréquente. Le temps de collecte réduit (3 heures) et le faible débit des pompes de prélèvement (2 l/min) peuvent expliquer la mise en évidence de mycotoxines limitée à 4 habitations. Deux perspectives sont envisageables : augmenter le temps de collecte et améliorer la sensibilité de la méthode de dosage en LC-MS/MS.

Les figures suivantes présentent des exemples de chromatogrammes d'échantillons positifs (habitation 11).

^a LQ : limite de quantification (0,3 ppb \leftrightarrow 0,15 ng/filtre)

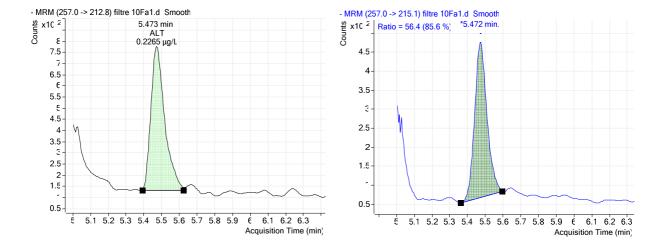
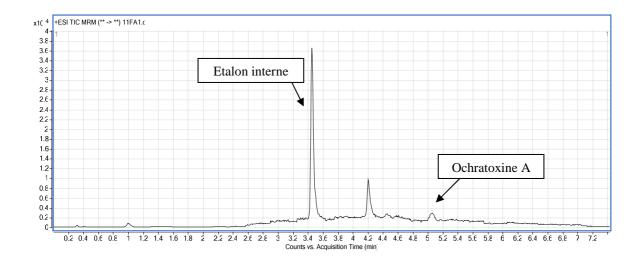
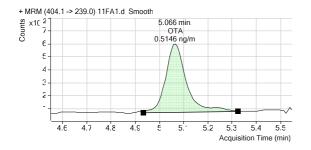




Figure 20. Exemple de chromatogramme et d'intensités de transitions MRM de l'alternariol quantifié à partir des bioaérosols.

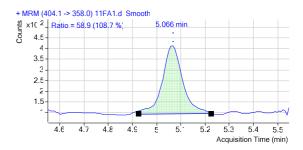


Figure 21. Exemple de chromatogramme et d'intensités de transitions MRM de l'ochratoxine A quantifiée à partir des bioaérosols.

C-2-5 Recherche de l'activité mutagène à partir des bioaérosols

L'activité mutagène a été recherchée sur l'ensemble des filtres issus des 2 pièces des 20 habitations étudiées. Comme le montre l'exemple suivant (tableaux 42 et 43), aucune activité mutagène n'a été mise en évidence à partir des bioaérosols. Les résultats de l'ensemble des habitations sont présentés en annexe.

Tableau 42. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 2.

S9 mix			TA 98			TA 100		TA 102		
	Dilution/boîte	Nb révertants/bte ^a R		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	39	2,9		155	3,9		371	8,2	
	témoin + ^c	1124		28,82						
	pure	43	1,9	1,10	137	13,5	0,88	383	30,0	1,03
	0,5	42	7,9	1,08	134	11,0	0,86	422	4,6	1,14
	0,25	43	1,7	1,10	138	4,7	0,89	431	23,7	1,16
-	TRS	37	3,9		146	2,9		304	12,3	
	témoin + ^c	74		2,00	1212		8,30	999		3,29
	pure	46	3,1	1,24	154	10,3	1,05	333	23,0	1,10
	0,5	42	6,7	1,14	137	13,7	0,94	347	24,9	1,14
	0,25	43	4,3	1,16	162	20,6	1,11	338	16,7	1,11

^a Moyenne et écart type

Tableau 43. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 2.

S9 mix			TA 98			TA 100		TA 102		
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb ants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	22	3,7		97	19,6		280	20,3	
	témoin +	360		16,36						
	pure	22	5,1	1,00	92	3,6	0,95	325	3,7	1,16
	0,5	17	1,9	0,77	106	11,8	1,09	278	24,1	0,99
	0,25	25	1,3	1,14	88	17,6	0,91	251	43,7	0,90
-	TRS	31	8,3		122	8,8		327	5,4	
	témoin +	750		24,2	1266		10,38	1431		4,38
	pure	26	6,4	0,8	130	8,4	1,07	370	9,9	1,13
	0,5	31	2,2	1,0	151	10,4	1,24	377	14,7	1,15
3 7 6	0,25	37	7,0	1,2	177	19,7	1,45	425	16,4	1,30

^a Moyenne et écart type

C-2-6 Etude des matériaux contaminés

Au total 122 et 29 matériaux, respectivement issus des pièces 1 et 2, ont été prélevés et analysés. Ces matériaux faisaient l'objet d'une contamination visible par un(des) champignon(s) lignivore(s) et/ou une(des) moisissure(s). Comme le montre le tableau suivant, 107 espèces différentes ont pu être identifiées à partir des matériaux. Ces espèces sont classées par occurrence.

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

[°] Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA 100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau 44. Fréquence des espèces fongiques identifiées à partir des matériaux prélevés dans les pièces 1 et 2 des habitations.

Pièce 1		Pièce 2	
Espèce	Occurrence	Espèce	Occurrence
Serpula lacrymans	54	Cladosporium cladosporioides	10
Trichoderma viride	44	Penicillium chrysogenum	9
Penicillium chrysogenum	34	Aspergillus versicolor	7
Aspergillus versicolor	31	Chaetomium globosum	5
Cladosporium cladosporioides	30	Penicillium brevicompactum	5
Penicillium fellutanum	28	Penicillium fellutanum	5
Cladosporium herbarum	23	Trichoderma viride	5
Aspergillus melleus	19	Levures	4
Levures	14	Rhizopus stolonifer	4
Aspergillus fumigatus	13	Serpula lacrymans	4
Penicillium brevicompactum	10	Aspergillus fumigatus	3
Epicoccum purpurascens	8	Penicillium corylophilum	3
Mucor hiemalis	8	Absidia cylindrospora	2
Penicillium expansum	8	Alternaria alternata	2
Penicillium purpurogenum	8	Cladosporium herbarum	2
Chaetomium globosum	7	Cladosporium sphaerospermum	2
Penicillium citreonigrum	7	Penicillium expansum	2
Alternaria alternata	6	Absidia spinosa	1
Mucor mucedo	6	Aspergillus melleus	1
Mucor plumbeus	6	Aureobasidium pullulans	1
Penicillium glabrum	6	Blastobotrys nivea	1
Stachybotrys chartarum	6	Emericella nidulans	1
Aspergillus niger	5	Fusarium poae	1
Coniophora puteana	5	Fusarium solani	1
Mortierella isabellina	5	Mucor plumbeus	1
Rhodotorula rubra	5	Myxotrichum deflexum	1
Serpula himantioides	5	Paecilomyces variotii	1
Ulocladium chartarum	5	Penicillium glabrum	1
Candida sp.	4	Penicillium griseofulvum	1
Dichobotrys sp.	4	Penicillium implicatum	1
Penicillium corylophilum	4	Penicillium paxilli	1
Penicillium viridicatum	4	Penicillium vinaceum	1
Rhizopus stolonifer	4	Penicillium waksmanii	1
Absidia corymbifera	3	Serpula himantioides	1
Absidia cylindrospora	3		
Coniophora olivacea	3		
Donkioporia expansa	3		
Penicillium paxilli	3		
Penicillium raistrickii	3		
Scopulariopsis brumptii	3		
Aphanocladium album	2		
Aspergillus flavus	2		
Aureobasidium pullulans	2		
Blastobotrys nivea	2		
Botrytis cinerea	2		
Fusarium sp.	2		
Paecilomyces variotii	2		
Penicillium bilaii	2		

Penicillium crustosum	2	
Penicillium miczynskii	2	
Penicillium olsonii	2	
Penicillium piceum	2	
Penicillium spinulosum	2	
Penicillium verrucosum	2	
Pseudallescheria boydii	2	
Scopulariopsis brevicaulis	2	
Absidia glauca	1	
Absidia repens	1	
Acremonium bacillisporum	1	
Acremonium strictum	1	
Alternaria tenuissima	1	
Arthrinium phaeospermum	1	
Aspergillus candidus	1	
Aspergillus clavatus	1	
Aspergillus groupe glaucus	1	
Aspergillus sydowii	1	
Chaetomium cochlioides	1	
Cladosporium macrocarpum	1	
Cladosporium sphaerospermum	1	
Eupenicillium brefeldianum	1	
Eurotium amstelodami	1	
Exophiala sp.	1	
Fusarium sambucinum	1	
Fusarium solani	1	
Fusarium verticillioides	1	
Geotrichum candidum	1	
Gliocladium roseum	1	
Nectria inventa	1	
Oidiodendron griseum	1	
Oidiodendron tenuissimum	1	
Penicillium citrinum	1	
Penicillium decumbens	1	
Penicillium echinulatum	1	
Penicillium islandicum	1	
Penicillium italicum	1	
Penicillium oxalicum	1	
Penicillium sclerotiorum	1	
Penicillium variabile	1	
Penicillium waksmanii	1	
Phanerochaete sordida	1	
Phoma eupyrena	1	
Phoma sp.	1	
Sordaria fimicola	1	
Stemphylium sp.	1	
Torulomyces lagena	1	
Trichoderma harzianum	1	
Trichoderma longibrachiatum	1	
Trichothecium roseum	1	
Verticillium alboatrum	1	
Verticillium leptobractum	1	

Certaines espèces telles qu'Aspergillus versicolor, Cladosporium cladosporioides, Penicillium chrysogenum et Penicillium fellutanum sont présentes de façon récurrente sur les matériaux des 2 pièces. On note aussi la présence d'espèces cellulolytiques comme Aureobasidium pullulans (pièces 1 et 2), Botrytis cinerea (pièce 1), Chaetomium globosum (pièces 1 et 2), Epicoccum purpurascens (pièce 1), Trichoderma viride (pièces 1 et 2). La présence de Trichoderma viride sur les matériaux de la pièce 1 est très importante. Cette observation montre que la dégradation de l'habitat n'est probablement pas uniquement due au champignon lignivore mais résulte aussi de l'action de moisissures associées.

Le tableau suivant présente la fréquence de présence d'une espèce de micromycète en fonction de la nature du matériau.

Tableau 45. Fréquence de détection de champignon sur un matériau en fonction de sa nature.

Nature du matériau	Fréquence de détection d'une espèce fongique sur le support	
bois	292	
mortier	126	
plastique	46	
papier peint	35	
métal	32	
bois (chêne)	27	
peinture	22	
carrelage	21	
brique	11	
carton	10	
joints ciment entre briques	9	
revêtement minéral sur plancher bois	9	
bois+mortier	8	
moquette	7	
plâtre	7	
bois+mousse expansive	6	
polystyrène	6	
PVC	4	
contreplaqué bois	3	
matelas	3	
papier	3	

Les matériaux à base de bois et de mortier sont les plus contaminés par des espèces fongiques. En distinguant les matériaux selon leur caractère organique ou minéral, les différentes espèces de moisissures et les champignons lignivores selon la forme observée (mycélium, sporophores, spores), nous observons la répartition présentée dans le tableau suivant.

Tableau 46. Occurrence des espèces fongiques en fonction du type de matériau.

Matériau organique		Matériau minéral		
Espèce	Occurrence	Espèce	Occurrence	
Serpula lacrymans	30	Serpula lacrymans	26	
Trichoderma viride	26	Aspergillus versicolor	20	
Penicillium chrysogenum	23	Trichoderma viride	20	
Serpula lacrymans mycelium	23	Cladosporium cladosporioides	17	
Cladosporium cladosporioides	22	Penicillium chrysogenum	17	
Aspergillus versicolor	18	Serpula lacrymans mycelium	15	
Cladosporium herbarum	17	Penicillium fellutanum	13	
Penicillium fellutanum	17	Serpula lacrymans spores	11	
Levures	13	Aspergillus melleus	9	
Aspergillus melleus	11	Aspergillus fumigatus	8	
Penicillium purpurogenum	8	Chaetomium globosum	8	
Aspergillus fumigatus	7	Cladosporium herbarum	8	
Penicillium glabrum	7	Penicillium brevicompactum	8	
Mucor plumbeus	6	Epicoccum purpurascens	6	
Penicillium brevicompactum	6	Penicillium expansum	6	
Serpula lacrymans sporophore	6	Levures	5	
Penicillium citreonigrum	5	Penicillium corylophilum	5	
Alternaria alternata	4	Rhizopus stolonifer	5	
Chaetomium globosum	4	Serpula lacrymans sporophore	5	
Mucor hiemalis	4	Mucor hiemalis	3	
Serpula lacrymans spores	3	Alternaria alternata		
Absidia cylindrospora Aureobasidium pullulans	3	Aspergillus niger	3	
	3	Mucor mucedo	3	
Candida sp.	3	Penicillium paxilli Penicillium raistrickii	3	
Donkioporia expansa	3		3	
Donkioporia expansa spores Mortierella isabellina	3	Stachybotrys chartarum Ulocladium chartarum	3	
Mucor mucedo	3	Absidia cylindrospora	2	
Paecilomyces variotii	3	Blastobotrys nivea	2	
Penicillium expansum	3	Cladosporium sphaerospermum	2	
Rhizopus stolonifer	3	Coniophora olivacea	2	
Rhodotorula rubra	3	Coniophora puteana	2	
Scopulariopsis brumptii	3	Dichobotrys sp.	2	
Stachybotrys chartarum	3	Fusarium solani	2	
Absidia corymbifera	2	Mortierella isabellina	2	
Aspergillus niger	2	Penicillium citreonigrum	2	
Dichobotrys sp.	2	Penicillium crustosum	2	
Donkioporia expansa sporophore	2	Penicillium viridicatum	2	
Epicoccum purpurascens	2	Rhodotorula rubra	2	
Fusarium sp.	2	Serpula himantioides	2	
Penicillium corylophilum	2	Absidia corymbifera	1	
Penicillium miczynskii	2	Absidia spinosa	1	
Penicillium viridicatum	2	Acremonium bacillisporum	1	
Pseudallescheria boydii	2	Alternaria tenuissima	1	
Serpula himantioides	2	Aphanocladium album	1	
Ulocladium chartarum	2	Aspergillus flavus	1	
Absidia glauca	1	Botrytis cinerea	1	
Absidia repens	1	Candida sp.	1	
Acremonium strictum	1	Cladosporium macrocarpum	1	
Aphanocladium album	1	Exophiala sp.	1	
Arthrinium phaeospermum	1	Fusarium sambucinum	1	
Aspergillus candidus	1	Geotrichum candidum	1	
Aspergillus clavatus	1	Gliocladium roseum	1	
Aspergillus flavus	1	Mucor plumbeus	1	
Aspergillus groupe glaucus	1	Penicillium bilaii	1	
Aspergillus sydowii	1	Penicillium griseofulvum	1	
Botrytis cinerea	1	Penicillium implicatum	1	

Blastobotrys nivea	1	Penicillium italicum	1
Botrytis cinerea	1	Penicillium olsonii	1
Chaetomium cochlioides	1	Penicillium piceum	1
Coniophora olivacea	1	Penicillium spinulosum	1
Coniophora puteana	1	Penicillium verrucosum	1
Donkioporia expansa mycelium	1	Penicillium waksmanii	1
Emericella nidulans	1	Phanerochaete sordida	1
Eupenicillium brefeldianum	1	Phoma sp.	1
Eurotium amstelodami	1	Scopulariopsis brevicaulis	1
Fusarium poae	1	Torulomyces lagena	1
Fusarium verticillioides	1	Trichoderma longibrachiatum	1
Nectria inventa	1	Trichothecium roseum	1
Oidiodendron griseum	1	Verticillium alboatrum	1
Oidiodendron tenuissimum	1		
Penicillium bilaii	1		
Penicillium citrinum	1		
Penicillium decumbens	1		
Penicillium echinulatum	1		
Penicillium islandicum	1		
Penicillium olsonii	1		
Penicillium oxalicum	1		
Penicillium paxilli	1		
Penicillium piceum	1		
Penicillium sclerotiorum	1		
Penicillium spinulosum	1		
Penicillium variabile	1		
Penicillium verrucosum	1		
Penicillium vinaceum	1		
Penicillium waksmanii	1		
Phoma eupyrena	1		
Scopulariopsis brevicaulis	1		
Serpula himantioides mycelium	1		
Sordaria fimicola	1		
Stemphylium sp.	1		
Trichoderma harzianum	1		
Verticillium leptobractum	1		

En rouge : espèces lignivores et formes observées (mycélium, spores, sporophores)

Matériaux organiques : bois, bois (chêne), carton, papier, papier peint, contreplaqué bois

Matériaux minéraux : brique, carrelage, mortier, métal, peinture, plastique, polystyrène, joints ciment entre

briques, plâtre, revêtement minéral sur plancher bois, PVC

Serpula lacrymans est retrouvé sur matériau organique et minéral, sous ses 3 formes (mycélium, sporophores et spores) ce qui montre sa capacité à coloniser tout type de support en émettant de longs cordons mycéliens capables de prélever de l'eau et des nutriments sur une très grande distance. Les spores de Serpula lacrymans ont davantage été retrouvées sur support minéral. Pour les autres espèces de champignons lignivores, Coniophora olivacea et C. puteana sont retrouvés sur les 2 types de support alors que Donkioporia expansa a été identifié à partir de support organique.

Les associations champignons lignivores-moisissures sur matériaux contaminés ont été recherchées (tableaux 47 à 50).

Tableau 47. Espèces fongiques associées à Serpula lacrymans sur matériaux contaminés.

Espèce fongique	Nombre de prélèvements positifs
Serpula lacrymans	58
Trichoderma viride	28
Penicillium fellutanum	18
Penicillium chrysogenum	16
Aspergillus versicolor	13
Aspergillus melleus	10
Cladosporium herbarum	10
Cladosporium cladosporioides	9
Aspergillus fumigatus	7
Levures	
Coniophora puteana	5
Epicoccum purpurascens	5
Mucor hiemalis	5
Mucor mucedo	5
Penicillium brevicompactum	5
Serpula himantioides	<u>5</u> 5
Absidia cylindrospora	<u> </u>
Chaetomium globosum	4
Absidia corymbifera	3
Aspergillus niger	3
Penicillium expansum	3
Penicillium glabrum	3
Penicillium paxilli	3
Penicilliium raistrickii	3
Penicillium viridicatum	3
Rhodotorula rubra	3
Alternaria alternata	2
Blastobotrys nivea	2
Botrytis nivea	2
Dichobotrys sp.	2
Fusarium sp.	2
Paecilomyces variotii	2
Penicillium citrinum	2
Penicillium corylophilum	2
Penicillium olsonii	2
Penicilliium piceum	2
Penicillium purpurogenum	2
Penicillium verrucosum	2
Scopulariopsis brumptii	2
Stachybotrys chartarum	2
Ulocladium chartarum	2
Absidia repens	1
Absidia spinosa	1
Alternaria tenuissima	1
Arthrinium phaeospermum	1
Aspergillus clavatus	1
Aspergillus groupe glaucus	1
Aspergillus sydowii	<u>.</u> 1
Chaetomium cochlioides	1
JJ.Commondoo	J

Cladosporium macrocarpum	1
Fusarium sambucinum	1
Fusarium verticillioides	1
Nectria inventa	1
Penicillium bilaii	1
Penicillium crustosum	1
Penicillium decumbens	1
Penicillium echinulatum	1
Penicillium islandicum	1
Penicillium miczynskii	1
Penicillium oxalicum	1
Penicillium waksmanii	1
Scopulariopsis brevicaulis	1
Trichoderma longibrachiatum	1
Trichothecium roseum	1
Verticillium alboatrum	1

Tableau 48. Espèces fongiques associées à Serpula himantioides sur matériaux contaminés.

Espèce fongique	Nombre de prélèvements positifs
Serpula himantioides	6
Coniophora puteana	5
Serpula lacrymans	5
Penicillium fellutanum	4
Trichoderma viride	4
Penicillium chrysogenum	2
Aspergillus versicolor	1
Mucor hiemalis	1
Paecilomyces variotii	1
Penicillium glabrum	1

Tableau 49. Espèces fongiques associées à Coniophora puteana sur matériaux contaminés.

Espèce fongique	Nombre de prélèvements positifs
Coniophora puteana	5
Serpula himantioides	5
Serpula lacrymans	5
Trichoderma viride	4
Penicillium fellutanum	3
Penicillium chrysogenum	2
Aspergillus versicolor	1
Mucor hiemalis	1

Tableau 50. Espèces fongiques associées à *Donkioporia expansa* sur matériaux contaminés.

Espèce fongique	Nombre de prélèvements positifs
Donkioporia expansa	3
Candida sp.	1
Mortierella isabellina	1
Oidiodendron tenuissimum	1
Pseudallescheria boydii	1
Trichoderma viride	1

Les prélèvements atteints par Serpula lacrymans comportent un cortège de moisissures :

des espèces potentiellement toxinogènes (Aspergillus fumigatus, Aspergillus melleus et Aspergillus versicolor), des Penicillia (Penicillium chrysogenum et Penicillium fellutanum), des espèces cellulolytiques (Trichoderma viride, Epicoccum purpurascens,...).

Trichoderma viride est associé aux 3 espèces de champignons lignivores retrouvées sur les matériaux.

Comme le montre le tableau suivant, les espèces de micromycètes détectées dans les bioaérosols des habitations sont également mises en évidence à partir des matériaux. On remarque cependant que certaines espèces fongiques telles qu'Aspergillus fumigatus ou Aureobasidium pulllulans sont majoritairement présentes dans l'air.

Tableau 51. Fréquence de détection dans les habitations des principales espèces de moisissures.

Espèce fongique	Sur matériaux	Dans l'air	Air et matériaux
Serpula lacrymans	18 [*]	7	7
Penicillium chrysogenum	15	12	11
Aspergillus versicolor	14	20	14
Penicillium fellutanum	14	20	14
Trichoderma viride	13	13	8
Cladosporium cladosporioides	12	12	10
Cladosporium herbarum	9	7	6
Aspergillus fumigatus	8	17	7
Penicillium brevicompactum	7	12	5
Penicillium expansum	7	10	2
Chaetomium globosum	7	7	4
Alternaria alternata	6	8	4
Epicoccum purpurascens	6	8	5
Rhodotorula rubra	5	8	3
Aspergillus melleus	5	7	4
Aspergillus niger	5	6	1
Penicillium citreonigrum	5	4	2
Mucor hiemalis	5	1	0
Ulocladium chartarum	4	7	1
Aureobasidium pullulans	2	8	2
Penicillium piceum	2	8	1
Fusarium sp.	2	6	1
Penicillium spinulosum	2	6	1
Penicillium variabile	1	6	1
Penicillium verrucosum	1	6	0

^{*} nombre d'habitations contaminées par l'espèce fongique

C-2-7 Bilan des questionnaires santé

Le tableau suivant synthétise les informations collectées au cours de l'enquête sur l'état de santé des habitants. Les données de santé ont été récoltées conformément au questionnaire santé présenté en **annexe**. Ces questionnaires santé ont pu être complétés dans 12 habitations, les autres habitations étant inoccupées.

Tableau 52. Informations relatives à l'état de santé des occupants des habitations atteintes par un champignon lignivore.

Habitation	Symptômes décrits dans l'habitation (pièce 1)	Remarques complémentaires (antécédents,)
3	Aucun	Allergie (chat) Pas de fumeur au domicile
	Aucun	
6	Aucun	Rhinite saisonnière (pollens) Pas de fumeur au domicile
7	Aucun	Traitement anti-hypertenseur Pas de fumeur au domicile
8	Mal de gorge, démangeaisons, urticaire	Bronchopneumonie en 2009 Pas de fumeur au domicile
12	Toux, gêne respiratoire	Toux et asthme depuis 2011 (été, automne et hiver) Traitement contre l'asthme
	Aucun	Aucunes
13	Nez bouché, mal de gorge, toux, mal de tête, douleurs musculaires, crises d'asthme, gêne respiratoire, urticaire, troubles du sommeil, fatigue	Asthme depuis 2011 Profil allergie respiratoire ^a : Pollens (classe 0 ou 1 selon type) Chat, chien, cheval (classe 0) Moisissures non testées Pas de fumeur au domicile
14	Aucun	Aucunes
15	Larmoiements, mal de gorge, mal de tête, toux, sinusite, gêne respiratoire, troubles du sommeil	Diabète
16	Nez bouché, larmoiements, mal de gorge, mal de tête, douleurs musculaires, douleurs dans la poitrine, sinusite, sensation de malaise, crises d'asthme, gêne respiratoire, démangeaisons (urticaire), éruptions cutanées, éternuements, saignements de nez Larmoiements, mal de gorge, toux, mal de tête,	Bronchite en novembre 2010 Pas d'allergie aux pollens et animaux Traitement contre l'asthme Pas de fumeur au domicile Angine en novembre 2010 et juin
	douleurs musculaires, syndrome grippal, sinusite, crises d'asthme, gêne respiratoire, démangeaisons, éruptions cutanées (eczéma), troubles du sommeil	2011 Otite en juin 2011 Traitement contre l'asthme Tests allergiques non réalisés Pas de fumeur au domicile
	Nez bouché, mal de gorge, toux, mal de tête, besoin de cracher dans la journée, syndrome grippal, sinusite, gêne respiratoire	Toux et angine en janvier 2011 Pas de fumeur au domicile
17	Nez bouché, mal de gorge, toux, mal de tête, besoin de cracher dans la journée, sinusite, gêne respiratoire, urticaire, troubles du sommeil	Toux régulière depuis janvier 2011 Acouphènes et mycose auriculaire causée par un Aspergillus. Le diagnostic et le traitement ont eu lieu en 2009. Pas de fumeur au domicile

	Nez bouché, conjonctivite, mal de gorge, toux d'irritation, mal de tête, sensation de malaise, démangeaisons, troubles du sommeil, éternuements	Fumeur (à l'extérieur du domicile)
18	Nez bouché, conjonctivite, mal de gorge, toux d'irritation, mal de tête, douleurs articulaires, sensation de malaise, crises d'asthme, gêne respiratoire, démangeaisons, troubles du sommeil	Bronchite en 2011 Salbutamol (Ventoline [®]) 2 mois avant l'enquête Pas de fumeur au domicile
	Nez bouché, conjonctivite, mal de gorge, mal de tête, besoin de cracher dans la journée, crises d'asthme, gêne respiratoire, démangeaisons, troubles du sommeil, éternuements	Traitement par desloratadine (Aerius [®]), fer (Ferrostrane [®]) et bétaméthasone (Diprosone [®]) Profil allergie respiratoire ^a : Acariens (classe 3) Chat (classe 2) Aspergillus fumigatus (classe 2) Pas de fumeur au domicile
20	Aucun	

^a classe 0: aucun anticorps détecté ; classe 1: très faible taux d'anticorps détecté ; classe 2: faible quantité d'anticorps détectée ; classe 3: détection sûre d'anticorps.

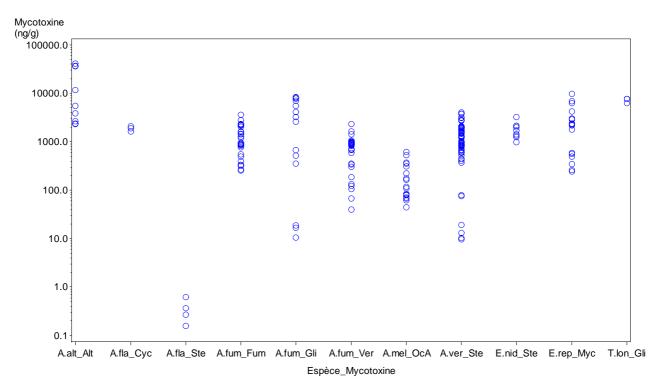
Les habitations pour lesquelles des troubles cliniques ont été rapportés ne comportent pas toutes la présence de spores de mérule; la contamination se caractérisant parfois uniquement par le développement de mycélium. En revanche la présence de moisissures est toujours observée. Le contexte de l'habitation 16 illustre ce rôle possible des espèces de moisissures associées à la mérule, il correspond en effet à une habitation avec des moisissures très présentes au niveau des surfaces contaminées et des signes cliniques (respiratoires et cutanés) sont observés chez les 2 enfants. Un suivi post-enquête nous a permis de constater que ces signes sont en nette régression après déménagement de la famille dans un autre logement. Afin de déterminer le rôle exact des moisissures dans l'apparition des problèmes de santé observés au cours de cette étude (en particulier troubles respiratoires et cutanés), des travaux complémentaires sont en cours dans des habitations humides présentant le développement de moisissures. L'étude de ces habitations, sélectionnées par l'Ecole de l'Asthme de Vire et l'Agence Régionale de Santé de Basse Normandie, a débuté en janvier 2013. Les résultats obtenus permettront de fournir des informations et recommandations complémentaires sur l'exposition aux moisissures et mycotoxines dans les habitations.

Il faut également noter le fort impact psychologique lié aux effets destructeurs du champignon sur l'habitat et aux conséquences économiques et judiciaires de cette atteinte.

C-3 Etude d'isolats fongiques collectés dans les habitations

C-3-1 Evaluation du potentiel toxinogène

Au total, 84 isolats fongiques collectés et purifiés suite aux prélèvements d'aérosols dans les habitations dégradées ont été testés quant à leur capacité à produire *in vitro* des mycotoxines. Nous avons choisi de nous focaliser principalement sur les isolats concernant des *Aspergilli* et genres apparentés (formes sexuées type *Eurotium* ou *Emericella*). D'autres isolats issus de genres récurrents et/ou potentiellement toxinogènes (*Stachybotrys*, *Alternaria*,...) ont également été testés. La méthode


multi-mycotoxines précédemment décrite a été utilisée pour rechercher 20 mycotoxines (cf. paragraphe B-3); chaque isolat fongique a été testé en triplicat après remise en culture sur milieu MEA.

Le tableau et la figure suivantes présentent les résultats de ce screening.

Tableau 53. Production de mycotoxines par les isolats fongiques collectés à partir des bioaérosols des habitations.

Nom de l'espèce fongique	Nombre d'isolats testés	Nombre d'isolats producteurs	Mycotoxine(s) produite(s)	Concentration moyenne ^a (ng/g milieu)	Concentration minimale ^a (ng/g milieu)	Concentration maximale ^a (ng/g milieu)
Aspergillus candidus	1	0				
Aspergillus flavus	3	1	Acide cyclopiazonique	1871,51	1638,22	2086,92
		2	Stérigmatocystine	0,24	0	0,62
Aspergillus fumigatus	10	10	Fumagilline	1276,28	257,22	3646,60
		5	Gliotoxine	3749,97	10,52	8316,55
		10	Verruculogène	759,95	39,82	2304,40
Aspergillus melleus	11	6	Ochratoxine A	196,96	44,14	620,54
Aspergillus niger	2	0				
Aspergillus niveus	1	0				
Aspergillus sydowii	1	0				
Aspergillus versicolor	21	21	Stérigmatocystine	1329,14	9,64	4021,69
Emericella nidulans	3	3	Stérigmatocystine	1797,62	978,60	3258,81
Eurotium amstelodami	3	0				
Eurotium repens	6	6	Acide mycophénolique	2736,42	245,69	9702,53
Alternaria alternata	5	3	Alternariol	15796,41	2337,19	41130,77
Ulocladium chartarum	2	0				
Aureobasidium pullulans	1	0				
Cladosporium sphaerospermum	1	0				
Nectria inventa	2	0				
Penicillium fellutanum	1	0				
Serpula lacrymans	1	0				
Stachybotrys chartarum	7	0				
Trichoderma longibrachiatum	1	1	Gliotoxine	7240,39	6310,25	7713,94
Trichoderma viride	1	0				

^a Valeur moyenne, minimale et maximale en mycotoxine produite par les isolats fongiques.

<u>Espèces</u>: A.alt: *Alternaria alternata*, A.fla: *Aspergillus flavus*, A.fum: *Aspergillus fumigatus*, A.mel: *Aspergillus melleus*, A.ver: *Aspergillus versicolor*, E.nid: *Emericella nidulans*, E. rep: *Eurotium repens*, T.lon: *Trichoderma longibrachiatum*.

<u>Mycotoxines</u>: Alt: alternariol, Cyc: acide cyclopiazonique, Fum: fumagilline, Gli: gliotoxine, Myc: acide mycophénolique, OcA: ochratoxine A, Ste: stérigmatocystine, Ver: verruculogène.

Figure 22. Représentation de la production de mycotoxine (log de ng/g milieu) par les isolats fongiques collectés à partir des bioaérosols.

Même s'il s'agit d'une production in vitro après mise en culture sur milieu standard solide, ces résultats nous permettent de mieux caractériser les isolats fongiques présents dans les habitations atteintes par un champignon lignivore. D'une manière générale on remarque qu'il existe, au sein de chacune des espèces testées, une grande variabilité dans la production de mycotoxines par les isolats fongiques. Parmi la microfonge aspergillaire, nous observons que tous les isolats d'Apsergillus fumigatus et d'Aspergillus versicolor sont toxinogènes. La fumagilline et le verruculogène sont produits par tous les isolats d'A. fumigatus et la stérigmatocystine, mycotoxine génotoxique précurseur de l'aflatoxine B₁, est produite par tous les isolats d'A. versicolor. Parmi les autres espèces appartenant à ce groupe des Aspergilli et genres apparentés, on note la production d'ochratoxine A par environ la moitié des isolats d'Aspergillus melleus (photo 43), et la production d'acice mycophénolique par tous les isolats d'Eurotium repens (photo 44). Il s'agit de la première mise en évidence de la production de ce métabolite secondaire aux propriétés immunosuppressives par cette espèce fongique. Concernant les autres espèces étudiées, certains isolats d'Alternaria alternata sont capables de produire de l'alternariol, parfois à des concentrations très élevées (supérieures à 40 µg/g) alors que le genre voisin Ulocladium chartarum ne produit pas cette mycotoxine. Enfin, la production de gliotoxine a pu être obervée avec une espèce de Trichoderma.

Photos 43 et 44 (D. Garon). Aspergillus melleus et Eurotium repens sur milieu malt-agar (MEA).

C-3-2 Evaluation de la mutagénicité

Le potentiel mutagène d'isolats fongiques issus des bioaérosols collectés dans les habitations a été évalué. Le tableau suivant présente les isolats testés.

Tableau 54. Caractéristiques des isolats fongiques testés.

Nom de l'espèce fongique	Mycotoxine(s) produite(s) par l'isolat	Quantité produite par l'isolat ^a (ng)
Alternaria alternata	Alternariol	4330
Aspergillus flavus	Acide cyclopiazonique	1207
Aspergillus melleus	Ochratoxine A	149
Aspergillus versicolor	Stérigmatocystine	1078
Emericella nidulans	Stérigmatocystine	1068
Eurotium repens	Acide mycophénolique	1301

^a Cette quantité est reprise dans 550 μl de DMSO et 10 μl sont déposés par boîte (solution pure). Des dilutions au ½ et ¼ sont également testées.

C-3-2-1 Isolat produisant de l'alternariol

Les résultats du test d'Ames sont présentés dans le tableau suivant.

Tableau 55. Mutagénicité de l'isolat d'Alternaria alternata produisant de l'alternariol.

S9 mix	Quantité		TA 98			TA 100			TA 102	
	d'alternariol par boîte (ng)	Nb révertants/bte ^a		Ratio ^b		Nb ants/bte	Ratio	Nb révertants/bte		Ratio
+	TRS	23	0,9		133	11,0		440	14,0	
	témoin + ^c	735		31,96						
	78,72	24	6,1	1,04	150	21,2	1,13	457	20,6	1,04
	39,36	21	3,8	0,91	153	14,8	1,15	485	21,0	1,10
	19,68	24	2,4	1,04	145	12,5	1,09	467	23,6	1,06
-	TRS	19	0,5		163	3,7		518	25,4	
	témoin + ^c	1800		94,74	700		4,29	1255		2,42
	78,72	36	1,2	1,89	252	25,2	1,55	513	2,9	0,99
	39,36	25	6,2	1,32	190	19,4	1,17	513	23,8	0,99
	19,68	26	4,3	1,37	194	14,9	1,19	482	27,4	0,93

^a Moyenne et écart type

^b Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Aucun effet mutagène n'est observé pour cet isolat ; on note cependant que pour TA98 et TA100 sans S9, les ratios ont néanmoins tendance à augmenter avec la quantité de mycotoxine testée. Nous avons donc testé le standard alternariol (Sigma) à des concentrations plus importantes, afin d'évaluer un éventuel effet mutagène.

Tableau 56. Mutagénicité de l'alternariol.

S9 mix	Quantité		TA 98			TA 100			TA 102	
	d'alternariol par boîte (ng)	r Nb révertants/bte ^a Ratio ^b		Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	22	4,1		155	7,4		351	2,9	
	témoin + ^c	1020		46,36						
	10000	26	7,8	1,18	178	11,6	1,14	467	27,0	1,33
	2500	21	5,7	0,95	171	41,5	1,10	447	13,9	1,27
	1000	25	8,6	1,14	162	8,5	1,04	432	12,7	1,23
	500	18	2,9	0,82	144	16,0	0,93	396	11,2	1,13
	200	27	7,6	1,23	166	4,2	1,07	398	0,9	1,13
	50	30	4,9	1,36	206	9,2	1,33	404	1,3	1,15
-	TRS	18	2,9		144	4,8		389	38,7	
	témoin + ^c	1416		78,67	570		3,96	1499		3,85
	10000	38	3,1	2,11	144	6,6	1,00	541	42,1	1,39
	2500	30	2,1	1,66	181	16,8	1,26	558	58,9	1,43
	1000	36	2,9	2,00	188	6,6	1,30	604	35,9	1,55
	500	26	0,8	1,44	148	6,2	1,03	429	16,5	1,10
	200	14	1,4	0,78	163	6,2	1,13	428	9,9	1,10
	50	23	2,9	1,28	147	7,7	1,02	465	16,0	1,20

^a Moyenne et écart type

On observe uniquement des ratios qui atteignent les seuils de mutagénicité pour les plus fortes concentrations testées avec les souches TA98 (sans S9) et TA102 (avec et sans S9).

C-3-2-2 Isolat produisant de l'acide cyclopiazonique

Les résultats du test d'Ames sont présentés dans le tableau suivant.

^b Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau 57. Mutagénicité de l'isolat d'*Aspergillus flavus* produisant de l'acide cyclopiazonique.

S9 mix	Quantité d'acide		TA 98			TA 100		TA 102		
	cyclopiazonique par boîte (ng)		Nb révertants/bte ^a		Nb révertants/bte		Ratio		Nb ants/bte	Ratio
+	TRS	20	7,5		117	4,2		353	22,5	
	témoin + ^c	721		36,05	•					
	21,95	22	7,7	1,10	119	4,5	1,02	395	2,9	1,12
	10,98	25	2,9	1,25	114	13,6	0,97	385	29,3	1,09
	5,49	25	4,6	1,25	131	9,0	1,12	401	22,2	1,14
-	TRS	21	6,1		138	4,8		378	31,5	
	témoin + ^c	2289		109,00	1295		9,38	1208		3,20
	21,95	13	3,7	0,62	123	12,3	0,89	401	21,0	1,06
	10,98	15	2,1	0,71	107	11,1	0,78	385	36,8	1,02
	5,49	16	3,6	0,76	114	3,3	0,83	357	4,5	0,94

^a Moyenne et écart type

Aucun effet mutagène n'a été observé aux concentrations testées.

C-3-2-3 Isolat produisant de l'ochratoxine A

Les résultats du test d'Ames sont présentés dans le tableau suivant.

Tableau 58. Mutagénicité de l'isolat d'Aspergillus melleus produisant de l'ochratoxine A.

S9 mix	Quantité		TA 98			TA 100		TA 102		
	d'ochratoxine A par boîte (ng)		Nb révertants/bte ^a			Nb révertants/bte		Nb révertants/bte		Ratio
+	TRS	39	6,1		127	9,0		399	13,8	
	témoin + ^c	585		15,00						
	2,71	41	5,9	1,05	141	6,5	1,11	371	31,1	0,93
	1,35	40	6,2	1,03	144	7,8	1,13	407	5,6	1,02
	0 ,68	40	7,8	1,03	129	4,0	1,02	444	20,7	1,11
-	TRS	14	3,7		151	10,9		430	3,7	
	témoin + ^c	2147		153,36	865		5,73	1394		3,24
	2,71	13	0,5	0,93	152	14,7	1,01	416	4,1	0,97
	1,35	10	3,8	0,71	137	21,6	0,91	425	20,1	0,99
	0 ,68	14	0,9	1,00	142	8,0	0,94	431	18,2	1,00

^a Moyenne et écart type

Aucun ratio n'est supérieur aux seuils de mutagénicité, cet isolat d'*Aspergillus melleus* n'est donc pas mutagène dans ces conditions de culture. Des résultats identiques sont obtenus avec un isolat d'*Aspergillus melleus* non producteur d'ochratoxine A (tableau suivant).

 $^{^{\}rm b}$ Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 $\,>$ 2 TRS, TA 100 $\,>$ 1,6 TRS, TA 102 $\,>$ 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau 59. Mutagénicité de l'isolat d'Aspergillus melleus ne produisant pas d'ochratoxine A.

S9 mix			TA 98		TA 100			TA 102		
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	20	7,5		127	9,0		399	13,8	
	témoin + ^c	721		36,05						
	extrait pur	23	3,3	1,15	129	7,3	1,02	378	19,8	0,95
	extrait dilué au 1/2	22	5,7	1,10	135	5,9	1,06	389	29,6	0,97
	extrait dilué au 1/4	23	5,6	1,15	142	2,9	1,12	372	13,1	0,93
-	TRS	14	7,8		130	12,8		454	23,8	
	témoin + ^c	1965		140,36	992		7,63	1440		3,17
	extrait pur	16	4,2	1,14	136	18,8	1,05	423	5,8	0,93
	extrait dilué au 1/2	13	0,8	0,93	132	20,7	1,02	424	16,0	0,93
	extrait dilué au 1/4	20	4,0	1,43	123	5,2	0,95	433	26,9	0,95

^a Moyenne et écart type

C-3-2-4 Isolats produisant de la stérigmatocystine

Aspergillus versicolor et Emericella nidulans sont 2 isolats producteurs de stérigmatocystine.

* Aspergillus versicolor:

Le tableau suivant présente les résultats obtenus avec cet isolat producteur.

Tableau 60. Mutagénicité de l'isolat d'Aspergillus versicolor producteur de stérigmatocystine.

S9 mix	Quantité de		TA 98		TA 100			TA 102		
	stérigmatocystine par boîte (ng)	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio		lb ants/bte	Ratio
+	TRS	35	1,4		118	11,8		429	20,6	
	témoin + ^c	491		14,03						
	19,6	74	17,9	2,11 ^d	1135	80,7	9,62 d	471	34,2	1,10
	9,8	26	10,2	0,74 ^d	1352	185,1	11,46 ^d	465	6,9	1,08
	4,9	251	43,6	7,17 ^d	161	14,8	1,36 ^d	440	22,7	1,03
	2,45	494	22,1	14,11	404	18	3,42 ^d			
	1,31	182	6,7	5,20	972	31	8,24			
	0,78	117	2,1	3,34	605	20	5,13			
-	TRS	35	2,4		124	9,9		422	21,1	
	témoin + ^c	2147		119,28	2147		5,91	1165		2,76
	19,6	122	15,3	3,49	740	2,5	5,97 ^d	390	11,0	0,92
	9,8	74	3,9	2,11	565	14,9	4,56	357	23,2	0,85
	4,9	53	2,9	1,51	344	19,2	2,77	386	15,1	0,91

^a Moyenne et écart type

Les résultats positifs (effet mutagène) sont en rouge

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

^d Effet toxique observé (pousse de fond)

Il n'y a pas d'effet mutagène observé avec la souche TA102 (ratios avec ou sans S9 proches de 1), en revanche un effet mutagène de l'isolat fongique est observé avec les souches TA98 et TA100. En l'absence de S9, les ratios obtenus avec la souche TA98 sont supérieurs au seuil de mutagénicité pour les concentrations les plus élevées (effet mutagène de l'ordre de 4 révertants/ng). Avec TA100, une augmentation du taux de réversion est observée pour les 3 concentrations testées mais un effet toxique a été observé pour la concentration la plus haute (19,6 ng de stérigmatocystine par /boîte soit 1,96 μg/ml). Les colonies observées peuvent être des survivants de génotype His- ou des révertants His+, qui seront dans ce cas sous-estimés. On ne peut donc conlure à un réel effet mutagène que pour les quantités en stérigmatocystine de 9,8 et 4,9 ng/boîte (effet mutagène de l'ordre de 45 révertants/ng). En présence de S9, une toxicité est visible sur la pousse de fond pour les concentrations comprises entre 4,9 et 19,6 ng par boîte. Des concentrations plus faibles ont été testées afin de s'affranchir de cette toxicité, elles permettent de mettre en évidence un effet mutagène de l'ordre de 105 à 187 révertants/ng pour TA98 et de 624 à 652 révertants/ng pour TA100.

* Emericella nidulans :

Le tableau suivant présente les résultats du test d'Ames obtenus avec cet isolat producteur.

Tableau 61. Mutagénicité de l'isolat d'Emericella nidulans producteur de stérigmatocystine.

S9 mix	Quantité de		TA 98			TA 100		TA 102		
	stérigmatocystine par boîte (ng)		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	39	2,9		126	8,2		504	45,0	
	témoin + ^c	547		14,03						
	19,40	429	8,0	11,00 ^d	285	14,5	2,26 ^d	502	19,5	1,00
	9,70	434	7,5	11,13	625	62,0	4,96 ^d	492	27,7	0,98
	4,85	213	16,4	5,46	1588	53,8	12,60 ^d	435	22,5	0,86
	3,88				1266	63,0	10,05			
	1,94				651	40,8	5,17			
	0,97				461	24,8	3,66			
-	TRS	34	0,8		118	18,8		499	3,7	
	témoin + ^c	2398		70,53	838		7,10	1570		3,15
	23,65	50	4,2	1,47	572	39,2	4,85	484	20,0	0,97
	11,83	41	1,4	1,21	352	20,3	2,98	509	16,7	1,02
	5,91	39	0,5	1,15	255	10,6	2,16	474	34,8	0,95

^a Moyenne et écart type

Les résultats positifs (effet mutagène) sont en rouge

L'isolat d'*Emericella nidulans* n'est pas mutagène vis-à-vis de la souche TA102. Pour les autres souches en présence de S9, une toxicité est observable aux plus fortes concentrations mais une mutagénicité est observée aux plus faibles concentrations : environ 40 révertants/ng pour TA98 et 300 révertants/ng pour TA100. Sans S9, l'isolat s'avère mutagène vis-à-vis de la souche TA100 (environ 20 révertants/ng).

 $^{^{\}rm b}$ Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 $\,>$ 2 TRS, TA 100 $\,>$ 1,6 TRS, TA 102 $\,>$ 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^d Effet toxique observé (pousse de fond)

* <u>Bilan</u>:

Afin de comparer l'effet mutagène de ces isolats et de la stérigmatocystine pure, nous avons testé le standard stérigmatocystine (Sigma) vis-à-vis des souches TA98, TA100 et TA102.

Tableau 62. Mutagénicité de la stérigmatocystine.

S9 mix	Quantité de		TA 98			TA 100			TA 102		
	stréigmatocystine par boîte (ng)	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio	
+	TRS	12	3,6		151	15,5		411	3,7		
	témoin + ^c	836		69,67							
	100	118	10,8	9,83	1114	68,9	7,38	405	25,3	0,99	
	50	47	5,6	3,92	665	19,1	4,40	437	7,9	1,06	
	25	22	2,8	1,83	482	22,4	3,19	438	16,1	1,07	
	10	30	2,2	2,50	367	7,3	2,43	401	24,7	0,97	
	2,5	26	2,1	2,12	186	11,4	1,23	427	5,8	1,04	
	1	20	5,1	1,67	132	0,8	0,87	430	24,1	1,04	
	0,5	18	2,9	1,50	125	12,2	0,83	418	13,6	1,01	
-	TRS	14	1,3		132	20,6		439	32,1		
	témoin + ^c	1865		133,21	520		3,94	1345		3,06	
	100	27	8,8	1,93	270	4,0	2,05	508	51,9	1,16	
	50	17	5,6	1,21	221	8,9	1,67	451	17,6	1,03	
	25	18	2,9	1,29	175	10,0	1,33	466	38,5	1,06	
	10	24	6,2	1,71	134	4,6	1,29	440	24,6	1,14	
	2,5	16	1,7	1,14	124	5,7	0,94	439	4,5	1,00	
	1	21	1,7	1,50	102	4,6	0,77	399	29,9	0,91	

^a Moyenne et écart type

Un effet mutagène est observé aux plus fortes concentrations avec les souches TA98 (avec S9) et TA100 (avec et sans S9). Aucun effet mutagène n'est observé vis-à-vis de la souche TA102.

Le tableau suivant récapitule et compare les profils mutagènes des 2 isolats producteurs de stérigmatocystine et de la mycotoxine standard.

Tableau 63. Bilan de l'évaluation de la mutagénicité (nombre de révertants par ng de mycotoxine) des isolats *Aspergillus versicolor*, *Emericella nidulans* et de la stérigmatocystine.

Conditions testées	Aspergillus versicolor	Emericella nidulans	Stérigmatocystine pure
TA98 sans S9	4 ^a	-	-
TA98 avec S9	105 à 187	40	0,7 à 1
TA100 sans S9	45	20	1,4 à 1,8
TA100 avec S9	624 à 652	300	10 à 13
TA102 sans S9	-	-	-
TA102 avec S9	-	-	-

^a Nombre de révertants par ng de mycotoxine

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 $\mu mol/bte$) Les résultats positifs (effet mutagène) sont en rouge

⁻ pas d'effet mutagène

On remarque qu'Aspergillus versicolor possède une activité mutagène plus importante qu'Emericella nidulans. Cet isolat possède de plus une action vis-à-vis de la souche TA98 sans S9, contrairement à Emericella nidulans. Ces conclusions permettent de formuler l'hypothèse de composés, autres que la stérigmatocystine, qui seraient produits par le micromycète et interviendraient dans l'effet mutagène. La comparaison avec la stérigmatocystine standard montre également que les 2 isolats fonqiques testés possèdent un potentiel mutagène nettement supérieur à la mycotoxine seule, ce qui renforce l'hypothèse du rôle d'autres métabolites toxiques.

C-3-2-5 Isolat produisant de l'acide mycophénolique

Les résultats du test d'Ames sont présentés dans le tableau suivant.

Tableau 64. Résultats du test d'Ames avec l'isolat d'*Eurotium repens* produisant de l'acide mycophénolique.

S9 mix	Quantité d'acide					TA 100		TA 102		
	mycophénolique par boîte (ng)		Nb révertants/bte ^a		Nb révertants/bte		Ratio		lb ants/bte	Ratio
+	TRS	24	2,9		82	14,0		397	16,4	
	témoin + ^c	841		35,04						
	23,7	18	4,5	0,75	91	3,0	1,11	381	42,6	0,96
	5,91	27	4,1	1,13	96	8,0	1,17	375	3,1	0,94
	2,37	23	1,0	0,96	85	10,0	1,04	385	22,5	0,97
-	TRS	23	2,1		77	4,5		227	22,4	
	témoin + ^c	1314		57,13	1262		16,39	1282		5,65
	23,7	25	8,0	1,09	66	4,0	0,86	199	18,9	0,88
	5,91	27	2,0	1,17	84	7,4	1,10	210	18,5	0,93
	2,37	26	1,0	1,13	79	1,9	1,03	204	5,7	0,90

^a Moyenne et écart type

Aucun effet mutagène n'a été observé pour cet isolat fongique.

C-3-3 Recherche de mycotoxines à partir de sporophore de mérule

Un sporophore de *Serpula lacrymans*, collecté dans l'habitation 7, a fait l'objet d'une recherche de mycotoxines. Le sporophore a subi 3 types d'extractions (cyclohexane, dichlorométhane et méthanol); chaque type d'extraction étant pratiqué successivement 3 fois. Les extraits obtenus sont évaporés puis repris par le solvant d'élution avant analyse en LC-MS/MS et GC-MS. Le protocole est décrit dans le tableau suivant.

 $^{^{\}rm b}$ Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 $\,>$ 2 TRS, TA 100 $\,>$ 1,6 TRS, TA 102 $\,>$ 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA 100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau 65. Protocole d'analyse du sporophore de Serpula lacrymans.

Analyse en LC-MS/MS	Analyse en GC-MS
Extraits secs repris dans 1 ml de phase mobile (eau acidifiée par acide formique 0,14% /acétonitrile; 50/50)	Extraits secs repris par 500 µl de réactif de dérivation (BSTFA + 1% TMCS). Chauffage à 90°C pendant 1 heure Evaporation du réactif sous courant d'azote Reprise par 100 µl du solvant initial.
Chromatographie liquide Agilent 1290 Infinity avec spectromètre de masse triple quadripole de type 6410 Quad LC-MS Colonne C18 Nucléosil 150 mm, 4,5 mm, 5µm Débit phase mobile : 0,35 ml/min Injection 10 µl Ionisation en ESI +, mode SCAN Paramètres de source : Gaz de nébulisation (azote) chauffé à 300°C, débit 10 l/min Gaz de désolvatation : (azote) chauffé à 4000C), débit 12 l/min Voltage du capillaire : 4,0 kV EMV : 300 V	Chromatographe en phase gazeuse Agilent 5890 couplé avec un spectromètre de masse 5973. Injecteur de type split/splitless (injection 2 μl) Colonne capillaire Optima 5 MS apolaire (30 m x 0,25 mm de diamètre interne x 0,25 μm épaisseur de film). Gaz vecteur : hélium Mode scan Four chauffé à 120℃ pendant 2 min, puis augmentation de 10℃/min jusqu'à 280℃ et température finale conservée pendant 30 min Injecteur et ligne de transfert chauffés à 280℃

La figure suivante présente un exemple de chromatogramme obtenu en GC-MS (mode scan).

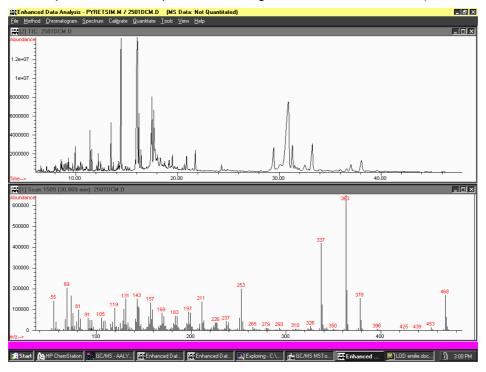


Figure 23. Exemple de chromatogramme obtenu après extraction d'un sporophore de *Serpula lacrymans* par le dichlorométhane.

Les différentes conditions d'analyses chromatographiques n'ont pas permis de mettre en évidence la présence de mycotoxines. Pour chaque pic chromatographique, les ions moléculaires et les spectres ont été comparés à ceux décrits dans la littérature ; cette comparaison n'a pas permis de mettre en évidence des mycotoxines connues. L'isolement et la purification de métabolites de

Serpula lacrymans, non décrits dans la littérature, nécessiterait de poursuivre ce travail à partir d'une plus grande quantité de sporophores.

D- Discussion et Valorisation

Ce travail constitue la première étude sur les bioaérosols dans les habitations dégradées par des champignons lignivores.

Les résultats de cette étude montrent que le nombre médian de particules (de 2 à 15 µm) est essentiellement fonction de l'habitat et ne peut être corrélé aux valeurs médianes, minimales ou maximales des températures et humidités relatives. L'observation de pics de particules au sein des pièces étudiées indique qu'il est important de privilégier une mesure continue de particules plutôt qu'une mesure ponctuelle qui ne reflètera pas les conditions réelles d'exposition. Chaque habitation se caractérise par sa température, son humidité et sa microfonge. On note tout de même que les températures et les humidités relatives sont en moyenne plus élevées dans les pièces où la présence de champignon lignivore est visible.

La recherche de champignons lignivores montre que pratiquement la moitié des habitations comporte des structures fongiques de champignons lignivores dans l'air. Les résultats indiquent que la contamination est principalement due à *Serpula lacrymans*. Cependant notre travail a pu mettre en évidence que d'autres espèces de Basidiomycètes dégradant le bois comme *Donkioporia expansa* sont également présentes dans l'air. Même si cette espèce a déjà été mise en évidence à partir de matériaux contaminés (Maurice *et al.*, 2011), notre étude constitue la première mise en évidence d'espèces de champignons lignivores dans des bioaérosols. L'exposition aux champignons lignivores est donc parfois multiple d'où l'intérêt d'une recherche multi-espèce et non uniquement focalisée sur la mérule. Enfin, la présence de *Serpula lacrymans* dans l'air de l'habitation est principalement liée au stade de développement du champignon qui se manifeste par la présence de sporophores actifs c'est-à-dire producteurs de spores mais aussi la présence de mycélium abondant.

Cette étude constitue la première analyse globale de la microfonge d'habitations atteintes par des champignons lignivores. L'analyse des espèces de moisissures viables à partir des bioaérosols collectés met en évidence 155 espèces différentes, avec un nombre d'espèces identifiées par habitation allant de 15 à 37. La microfonge d'environnements intérieurs apparaît donc complexe. Certains auteurs l'évaluent également à plus de 100 espèces fongiques (Adan & Samson, 2011; Yang et Heinsohn, 2007) mais la plupart des études ne portent cependant, le plus souvent, que sur quelques espèces fongiques.

Des espèces se caractérisent par leur récurrence : Aspergillus fumigatus, Aspergillus versicolor et Penicillium fellutanum. Certaines espèces de moisissures comme Trichoderma viride et Epicoccum purpurascens sont présentes de façon plus fréquente dans les pièces comportant un champignon lignivore et pourraient être des indicateurs fongiques de la dégradation du milieu en raison de leur caractère fortement cellulolytique (Samson, 1999).

Notre travail apporte également des données quantitatives sur la contamination fongique en milieu intérieur. Les données quantitatives sont peu nombreuses dans la littérature (Green, 2006). La quantification des spores fongiques (cfu) dans l'air des habitations atteintes par un champignon lignivore montre des niveaux variables selon les habitations allant de 1.10¹ à plus de 3.10⁵ cfu/m³. Cette valeur maximale est comparable à celle observée lors d'une étude en Louisiane (USA) dans des habitations inondées par l'ouragan Katrina en 2005 (Solomon *et al.*, 2005). Elle est également supérieure à 10⁵ spores/m³, la concentration la plus faible à laquelle un effet est observé (LOEL) proposée par Eduard (2009). Cette valeur de LOEL est atteinte pour une seule des habitations enquêtées, ce qui pourrait expliquer les données cliniques (symptômes recensés) limitées au cours de notre étude. Parmi l'ensemble des espèces fongiques identifiées, deux espèces présentent ponctuellement des valeurs supérieures à la LOEL : *Aspergillus versicolor* et *Penicillium fellutanum*. Dans notre étude, les niveaux moyens en éléments fongiques (cfu) se situent entre 10³ et 10⁴ cfu/m³, ce qui reste supérieur aux niveaux moyens de l'ordre de 3.10² cfu/m³ mis en évidence par Codina (2008) dans des habitations non humides ainsi qu'aux niveaux d'habitations non dégradées qui ne dépassent pas 10² cfu/m³ d'air dans notre étude.

Les niveaux variables en cfu selon les habitations traduisent cet effet habitat qui ne s'accompagne pas d'un effet pièce, ce qui montre une circulation des spores fongiques au sein de l'habitat entre les pièces contaminées et non contaminées. Les spores fongiques totales sont corrélées au nombre médian de particules de 2 à 15 µm ce qui pourrait faire de cette mesure un indicateur du niveau de contamination fongique dans l'habitation. Le choix de cette fenêtre de particules permet de prendre en compte les spores de moisissures et de champignons lignivores. En revanche les médianes de température et d'humidité ne peuvent pas être utilisées comme indicatrices de cette contamination (pas de corrélation avec les cfu totales).

Cette étude permet également d'apporter des informations techniques sur la collecte des bioaérosols en milieu intérieur. La comparaison des 2 modes de prélèvements, sur filtre et dans du liquide stérile montre que le capteur liquide permet de recueillir davantage de constituants fongiques viables (cfu totales). Cet effet est particulièrement visible pour certaines espèces fongiques comme Cladosporium cladosporioides et Aureobasidium pullulans. En revanche la collecte d'Aspergillus fumigatus est meilleure à partir de filtre PTFE. Ainsi même si les 2 types de collecteurs semblent complémentaires, le biocollecteur de type cyclone (collecte dans du liquide stérile) semble plus adapté pour une évaluation quantitative de l'exposition fongique en milieu intérieur.

De même la comparaison des résultats en fonction de la température de croissance (25° C et 30° C) montre que 25° C permet le développement de plus de cfu.

Concernant les espèces identifiées dans l'air des habitations, *Aspergillus versicolor* et *Penicillium fellutanum*, sont 2 espèces récurrentes dans les 2 pièces étudiées. Elles s'avèrent être aussi prédominantes d'un point de vue quantitatif. En revanche, *Aspergillus fumigatus*, malgré sa présence dans la majorité des pièces étudiées, n'est pas une espèce majoritaire d'un point de vue quantitatif. Au contraire certaines espèces comme *Aureobasidium pullulans*, ou *Exophiala moniliae* ne sont pas très fréquentes mais peuvent être présentes à des niveaux importants. Ces 2 espèces peuvent être à l'origine d'infections et représentent des facteurs de risque pour l'asthme (Matsumoto et *al.*, 1987; Niedoszytko *et al.*, 2007).

L'étude des paramètres physico-chimiques des habitations et des espèces fongiques viables met en évidence qu'une même espèce peut être présente sur une large gamme de température et d'humidité relative. Des espèces thermotolérantes comme *Aspergillus fumigatus* peuvent même être retrouvées dans l'air pour des températures inférieures à 20°C.

L'exposition aux mycotoxines dans les habitations atteintes par un champignon lignivore s'avère faible puisque seulement 4 habitations ont fait l'objet d'une mise en évidence de mycotoxine. Le faible débit de collecte sur filtres (2 l/min) constitue cependant une limite à cette observation, car il est possible qu'il soit à l'origine d'une sous-estimation du niveau de contamination en mycotoxines.

L'alternariol et l'ochratoxine A ont été mises en évidence, respectivement dans 4 et 1 habitation. Les études portant sur la mise en évidence de mycotoxines en milieu intérieur restent à ce jour peu nombreuses, elles portent le plus souvent sur les toxines (trichothécènes macrocycliques) de *Stachybotrys chartarum* (trichothécènes macrocycliques), un micromycète impliqué dans le « sick buildings syndrome » (Adan & Samson, 2011; Pestka *et al.*, 2008). Récemment l'étude de Täubel (2011) a mis également en évidence des métabolites secondaires d'origine fongique dont l'alternariol et l'ochratoxine A dans des habitations dégradées par l'humidité. Cette étude ne quantifie cependant pas ces mycotoxines.

Aucune activité mutagène n'a été mise en évidence à partir des bioaérosols, ce qui semble en adéquation avec l'absence ou la présence en très faible concentration de mycotoxines dans l'air des habitations.

L'étude des matériaux présentant une atteinte par un champignon lignivore montre que la contamination est parfois due à plusieurs espèces de basidiomycètes. Ceci montre l'importance d'un diagnostic précis au sein de l'habitation. Ce diagnostic ne doit pas se limiter à un simple examen visuel de l'habitat mais doit également comporter une analyse microscopique et moléculaire (identification par PCR) des échantillons prélevés.

L'analyse de plus de 150 matériaux a permis de mettre en évidence 107 espèces de moisissures, parmi lesquelles Aspergillus versicolor, Cladosporium cladosporioides, Penicillium chrysogenum et Penicillium fellutanum qui sont présentes de façon récurrente sur les matériaux des 2 pièces. La présence de l'espèce cellulolytique Trichoderma viride sur les matériaux de la pièce 1 est très importante ce qui montre la cohabitation de moisissures avec des champignons lignivores dans la

dégradation des matériaux. Une récente étude d'Andersen (2011) sur les matériaux montre qu'Aspergillus versicolor et Penicillium chrysogenum sont les espèces les plus communes dans les habitations dégradées par l'humidité. Des espèces cellulolytiques comme Chaetomium spp ou Trichoderma spp sont également mises en évidence.

Une analyse plus précise du type de matériau atteint montre que *Serpula lacrymans* est capable de se développer aussi bien sur matériau organique et minéral. Les prélèvements atteints par *Serpula lacrymans* comportent un cortège de moisissures : des espèces potentiellement toxinogènes (*Aspergillus fumigatus*, *Aspergillus melleus* et *Aspergillus versicolor*), des *Penicillia (Penicillium chrysogenum* et *Penicillium fellutanum*), des espèces cellulolytiques (*Trichoderma viride*, *Epicoccum purpurascens*,...). La mérule apparaît donc comme un « écosystème » abritant un cortège de moisissures ainsi que parfois des insectes dont le rôle possible dans la dégradation et la dissémination des spores reste à élucider.

La plupart des espèces mises en évidence dans l'air sont également présentes sur les matériaux, on note cependant que certaines espèces fongiques comme *Aspergillus fumigatus* ou *Aureobasidium pulllulans* sont majoritairement présentes dans l'air.

En termes de données de santé, les habitations pour lesquelles des troubles respiratoires ou cutanés sont décrits ne font pas toutes l'objet d'une contamination massive par des spores de mérule. Même si certaines publications ont mis en évidence le caractère allergène des spores de *Serpula lacrymans* (O'Brien *et al.*, 1978), l'implication des moisissures semble également primordiale. Bryant & Rogers (1991) ont aussi montré la présence concomitante de *Serpula lacrymans* et de micromycètes comme *Paecilomyces variotii* dans des habitations dont les occupants présentaient des alvéolites allergiques.

L'étude du potentiel toxinogène d'isolats collectés à partir des bioaérosols montre que certains isolats ont la capacité de produire des mycotoxines in vitro. C'est le cas des isolats d'Apsergillus fumigatus, d'Aspergillus versicolor, d'Aspergillus melleus, d'Eurotium repens et d'Alternaria alternata. Parmi ces isolats, certains peuvent produire des quantités très importantes de mycotoxines. Une évaluation de mutagénicité de ces isolats producteurs montre que seuls les isolats produisant de la stérigmatocystine présentent une activité mutagène. Pour les autres isolats producteurs d'ochratoxine A, d'acide cyclopiazonique, d'acide mycophénolique et d'alternariol, aucune activité mutagène n'est décelée, ce qui est conforme avec les données de la littérature. En effet la mutagénicité de l'ochratoxine A, de l'acide cyclopiazonique, et de l'alternariol a été mise en évidence mais à des concentrations plus élevées (Obrecht-Pflumio et al., 1999; Sorensen et al., 1984; Schrader et al., 2001). L'acide mycophénolique ne semble pas, quant à lui, présenter de mutagénicité (Sram et al., 1993). Pour les isolats producteurs de stérigmatocystine, on remarque qu'Aspergillus versicolor possède une activité mutagène plus importante qu'Emericella nidulans. De plus la comparaison avec la stérigmatocystine pure (standard) montre que les 2 isolats fongiques testés possèdent un potentiel mutagène nettement supérieur à la mycotoxine seule, ce qui renforce l'hypothèse du rôle d'autres métabolites toxiques. Enfin, un effet mutagène sans activation métabolique est observé dans notre

étude (en particulier pour l'isolat *A. versicolor*), ce qui n'a pas été démontré dans les études précédentes (Mori *et al.*, 1986).

Ces observations montrent l'intérêt de poursuivre l'étude des métabolites secondaires produits par les moisissures en milieu intérieur.

Ce travail a fait l'objet d'actions de valorisation sous diverses formes :

Des articles ont été publiés dans des journaux « grand public » afin de présenter le projet : journal Liberté - le bonhomme libre (avril 2010), revue Connexions Basse-Normandie (mai 2010), journal Ouest France (mai 2010).

Une fiche technique a été rédigée pour Bertin technologies[®] (fiche présentée en **annexe**)

Ce travail a été présenté en communication orale lors du congrès international ATMOS'FAIR à Lyon le 26 septembre 2012 : Virginie Séguin, Véronique André, Jean-Philippe Rioult, Didier Pottier, Mathieu Guibert, Alain Bourreau, Rachel Picquet, Valérie Kientz-Bouchart, Philippe Vérité, <u>David Garon</u>. Fungal profiles of bioaerosols collected in houses damaged by *Serpula lacrymans* and molds: exposure and genotoxicity assessment.

Des publications internationales sont actuellement soumises ou en cours de finalisation :

- Publication dans la revue Mycopathologia : Virginie Séguin, Stéphanie Gente, Natacha Heutte, Valérie Kientz-Bouchart, Lucile Sage, Didier Goux, David Garon. A first report of mycophenolic acid production by *Eurotium repens* isolated from agricultural and indoor environments (<u>soumise</u>).
- Publication dans la revue Indoor Air : Virginie Séguin, Véronique André, Jean-Philippe Rioult, Didier Pottier, Mathieu Guibert, Alain Bourreau, Rachel Picquet, Valérie Kientz-Bouchart, Philippe Vérité, David Garon. Fungal contamination in bioaerosols collected from houses damaged by *Serpula lacrymans* and molds (<u>rédaction en cours</u>).
- Une publication sur les aspects « isolats toxinogènes » sera également réalisée à partir des résultats de production de mycotoxines *in vitro* et des tests de mutagénicité réalisés sur les souches collectées à partir des habitations dégradées.

Une plaquette de synthèse des résultats, destinée à l'ensemble des participants au projet, est également en cours de rédaction.

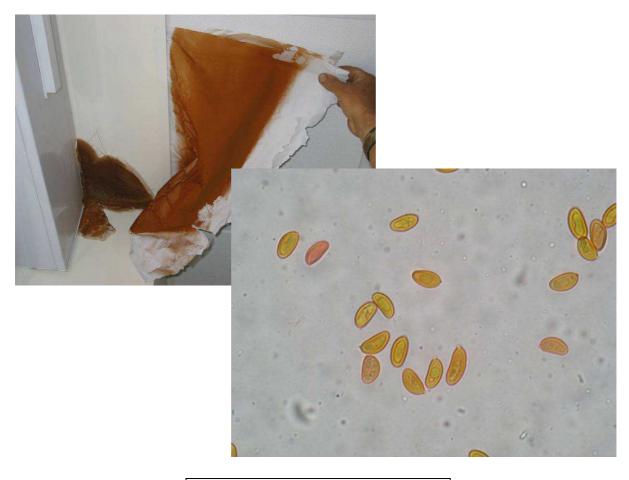
BIBLIOGRAPHIE

- Adan OCG. & Samson RA. Fundamentals of mold growth in indoor environments and strategies for healthy living, Wageningen Academic Publishers, The Netherlands, 2011, 523 pp.
- Andersen B., Frisvad J.C., Søndergaard I., Rasmussen I.S., Larsen LS. 2011. Associations between Fungal Species and Water-Damaged Building Materials. *Applied and Environmental Microbiology* 77(12): 4180-4188.
- Bony S., Olivier-Loiseau L., Carcelen M., Devaux A. 2007. Genotoxic potential associated with low levels of the *Fusarium* mycotoxins nivalenol and fusarenon X in a human intestinal cell line. *Toxicology in Vitro* 21(3): 457-465.

- Brugger E. M., Wagner J., Schumacher D. M., Koch K., Podlech J., Metzler M., Lehmann L. 2006. Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. *Toxicology Letters* 164: 221-230.
- Bryant DH. & Rogers P. 1991. Allergic alveolitis due to wood-rot fungi. *Allergy Proceedings* 12(2): 89-94.
- Bünger J., Westphal G., Mönnich A., Müller M. 2004. Cytotoxicity of occupationally and environmentally relevant mycotoxins. *Toxicology* 202(3): 199-211.
- Codina R., Fox RW., Lockey RF., DeMarco P., Bagg. Typical levels of airborne fungal spores in houses without obvious moisture problems during a rainy season in Florida, USA. Journal of *Investigational Allergology and Clinical Immunology* 18(3): 156-162.
- Cvetnic Z., Pepeljnjak S. 1997. Distribution and mycotoxin-producing ability of some fungal isolates from the air. *Atmospheric Environment* 31(3): 491-5.
- Dvořáčková I. 1976. Aflatoxin and alveolar cell carcinoma. British Medical Journal 1(6011): 691.
- Eduard W. 2009. Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. *Critical reviews in Toxicology* 39(10), 799-864.
- Eichner R. D., Waring P., Geue A. M., Braithwaite A. W., Mullbacher A. 1988. Gliotoxin causes oxidative damage to plasmid and cellular DNA. *Journal of Biological Chemistry* 263: 3772-3777.
- Fischer G., Dott W. 2003. Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. *Archives of Microbiology* 179: 75-82.
- Golden M. C., Hahm S. J., Elessar R. E., Saksonov S., Steinberg J. J. 1998. DNA damage by gliotoxin from *Aspergillus fumigatus*. An occupational and environmental propagule: adduct detection as measured by ³²P DNA radiolabelling and two-dimensional thin-layer chromatography. *Mycoses* 41(3-4): 97-104.
- Green BJ., Tovey ER., Sercombe JK., Blachere FM., Beezhold DH., Schmechel D. 2006. Airborne fungal fragments and allergenicity. *Medical Mycology* 44, S245-S255.
- lavicoli I., Brera C., Carelli G., Caputi R., Marinaccio A., Miraglia M. 2002. External and internal dose in subjects occupationally exposed to ochratoxin A. *International Archives of Occupational and Environmental Health* 75(6): 381-6
- IOM (Institute of Medicine of the National Academies), Committee on Damp Indoor Spaces and Health, Board on Health Promotion and Disease Prevention, *Damp Indoor Spaces and Health*, The National Academic Press, Washington, DC, 2004.
- Lappalainen S., Nikulin M., Berg S., Parikka P., Hintikka E-L., Pasanen A-L. 1996. *Fusarium* toxins and fungi associated with handling of grain on eight finnish farms. *Atmospheric Environment* 30(17): 3059-65.
- Lehmann L., Wagner J., Metzler M. 2006. Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells. *Food and Chemical Toxicology* 44: 398-408.
- Matsumoto T., Padhye AA., Ajello L. 1987. Medical significance of the so-called black yeasts. *European Journal of Epidemiology* 3(2): 87-95.
- Maurice S., Le Floch G., Le Bras-Quéré M., Barbier G. 2011. Improved molecular methods to characterise Serpula lacrymans and other Basidiomycètes involved in wood decay. 84, 208-215.
- Mori H., Sugie S., Yaoskimi N., Kitamuna J., Niwa M., Hamasaki T., Kawai K. 1986. Genotoxic effects of variety of sterigmatocystin-related compounds in the hepatocyte, DNA-repair test and the Salmonella microsome assay. Mutation Research 173(3): 217-222.
- Niedoszytko M., Chelminska M., Jassem E., Czestochowska E. 2007. Association between sensitization to Aureobasidium pullulans (Pullularia sp.) and severity of asthma. *Annals of Allergy, Asthma & Immunology* 98: 153-156.
- Nielsen K. F. 2003. Mycotoxin production by indoor molds. Fungal Genetics and Biology 39: 103-17.
- O'Brien IM., Bull J., Creamer B., Spulveda R., Harries M., Burge PS., Pepys J. 1978. Asthma and extrinsic allergic alveolitis due to Merulius lacrymans. 8: 535-542.
- Obrecht-Pflumio S., Chassat T, Dirheimer G, Marzin D. 1999. Genotoxicity of ochratoxin A by *Salmonella* mutagenicity test after bioactivation by mouse kidney microsomes. *Mutation Research* 446, 95-102.
- Oswald I., Comera C. 1998. Immunotoxicity of mycotoxins. *Revue de Médecine Vétérinaire* 149, 585-90.

- Pestka JJ., Yike I., Dearborn DG., Ward MDW., Harkema JR. 2008. *Stachybotrys chartarum*, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. *Toxicological Sciences* 104(1), 4-26.
- Richard E., heutte N., Bouchart V., Garon D. 2009. Evaluation of fungal contamination and mycotoxin production in maize silage. *Animal Feed Science and Technology* 140: 309-320.
- Rioult J.-Ph., Bourreau A., 2003. La Mérule, un champignon destructeur des bois ouvrés. *Demeure Historique* (Paris) 149: 14-17.
- Samson R.A. Ecology, detection, and identification problems of moulds in indoor environments, *In Bioaerosols, Fungi and Mycotoxins, Health Effects, Assessment, Prevention, and Control*, E. Johanning, ed., Eastern New York Occupational & Environmental Health center, Albany, NY and Mount Sinai School of Medicine, New York, 1999, pp. 33-37.
- Schmidt O. and Moreth U. 2000. Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for Serpula lacrymans. *Mycological Research* 14(1): 69-72.
- Schrader TJ., Cherry W, Soper K, Langlois I, Vijai HM. 2001. Examination of *Alternaria alternata* mutagenicity and effects of nitrosylation using the Ames Salmonella test. *Teratogenesis, Carcinogenesis and Mutagenesis* 21(4): 261-274.
- Selim M. I., Juchems A. M., Popendorf W. 1998. Assessing airborne aflatoxin B₁ during on-farm grain handling activities. *American Industrial Hygiene Association Journal* 59: 252-6.
- Solomon GM., Hjelmroos-Koski M., Rotkin-Ellman M., Hammond K. 2006. Airborne mold and endotoxin concentrations in New Orleans, Louisiana, after flooding, October through November 2005. *Environmental Health Perspectives* 114(9), 1381-1386.
- Sorenson WG. Occupational respiratory disease: organic dust toxic syndrome. *In Microorganisms in Home and Indoor Work Environments*, B. Flannigan, RA. Samson and JD. Miller, eds, Taylor & Francis, London and New York, 2001, pp. 143-153.
- Sram RJ., Dobias L., Rössner P., Vesela D., Vesely D., Rakusova R., Rericha V. 1993. Monitoring genotoxic exposure in uranium mines. *Environmental Health Perspectives* 101(Suppl 3): 155-158.
- Täubel M., Sulyok M., Vishwanath V., Bloom E., Turunen M., Järvi K., Kauhanen E., Krska R., Hyvärinen A, Larsson L., Nevalainen A. 2011. Co-occurence of toxic bacterial and fungal secondary metabolites in moisture-damaged indoor environments. *Indoor Air* 21: 368-375.
- Waring P., Eichner R. D., Mullbacher A., Sjaarda A. 1988. Gliotoxin induces apoptosis in macrophages unrelated to its antiphagocytic properties. *Journal of Biological Chemistry* 263: 18493-18499.
- Yang CS., Heinsohn PA. Sampling and analysis of indoor microorganisms. John Wiley and Sons, Inc., Hoboken, New Jersey, 2007, 273 pp.
- Yang G. H., Jarvis B. B., Chung Y. J., Pestka J. J. 2000. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. *Toxicology and Applied Pharmacology* 164(2): 149-160.

ANNEXES


- Annexe A: Questionnaire « habitation et habitant ».
- Annexe B: Températures et Humidités relatives (HR) mesurées dans les habitations.
- Annexe C : Etude des conditions physiques (température, humidité) sur les espèces fongiques quantifiées.
- Annexe D : Etude des conditions expérimentales (type de capteur, température de croissance) sur les espèces fongiques quantifiées.
- Annexe E : Recherche de l'activité mutagène à partir des bioaérosols.
- Annexe F: Ficher technique réalisée pour Bertin technologies[®].

ANNEXE A: questionnaire « habitation et habitant »

ABTE EA 4651, équipe ToxEMAC - Université de Caen Basse-Normandie

Bâtiment GRECAN - Centre François Baclesse - BP 5026 - 14076 Caen Cedex 05

ETUDE DES BIOAEROSOLS DANS LES HABITATIONS DEGRADEES PAR LA MERULE (SERPULA LACRYMANS) ET LES MOISISSURES (MYCOAEROTOX)

Observation n° //_/
Date //_/ // 20//_/

Enquête 2009-2012 (Grand-Ouest)

TABLE DES MATIERES

Cahier d'observation	Pages
Partie Renseignements (blanche)	3
Partie Consentement de participation (blanche)	4
Partie Liste du matériel à apporter (blanche)	5
Partie Vérification du matériel (blanche)	6
Partie Habitant(s) (verte)	8
Partie Habitation (bleue)	14
Partie Pompes (jaune)	23
Partie Remarques générales (blanche)	24
Partie Inventaire et localisation des échantillons (grise)	25
Partie Etiquettes (blanche)	26

dresse: ode postal : //// lle :	
lle :	
épartement :	
ode INSEE : //_/ //	
Desition GPS: Latitude //_/%/_/' //" // Longitude //_/%/_/' //" // (E Est / N Nord / O Ouest / S Sud)	
om du (des) observateur(s) :	
ate de l'observation : //_/ // 20//_/	
eure d'arrivée : //_/ h //_/ min	
eure de départ : //_/ h //_/ min	

Signature du (des) observateur(s) : (Quand vérification complète du cahier d'observation et des échantillons)

CONSENTEMENT DE PARTICIPATION

ABTE EA 4651, équipe ToxEMAC - Université de Caen Basse-Normandie Bâtiment GRECAN - Centre François Baclesse - BP 5026 - 14076 Caen Cedex 05

☎: 02.31.45.52.21Fax: 02.31.45.51.72⋈: david.garon@unicaen.fr

De Monsieur - Madame : Nom: Prénom : _____ Adresse: Titre identifiant le sujet de la recherche : Etude de la contamination fongique de bioaérosols dans des habitations dégradées par la mérule (Serpula lacrymans) et les moisissures : Evaluation de l'exposition sur la santé humaine et impact génotoxique (MYCOAEROTOX) Le Docteur David GARON m'a proposé de participer à une recherche organisée dans le Grand Ouest par l'équipe de recherche du GRECAN / ABTE de Caen. Il m'a précisé que je suis libre d'accepter ou de refuser. J'ai bien compris les informations suivantes : L'étude à laquelle il m'est demandé de participer a pour but principal de répondre à la question suivante : quelle est l'exposition des habitants aux mycotoxines et aux spores fongiques dans une habitation dégradée par la mérule et les moisissures ? Pour cela, des mesures d'exposition (dosage de mycotoxines et identification de moisissures) seront réalisées sur des prélèvements de matériaux contaminés (bois, papier peint, ...) et d'air issus de l'habitation enquêtée. Il m'est demandé de répondre à un questionnaire. Les réponses à ce questionnaire seront consignées dans un dossier conservé au GRECAN /ABTE. J'accepte de participer à cette recherche dans les conditions précisées ci-dessus. Mon consentement ne décharge pas les organisateurs de la recherche de leurs responsabilités. Je conserve tous mes droits garantis par la loi. Si je le désire, je serais libre à tout moment d'arrêter ma participation. Les données qui me concernent resteront confidentielles. Je n'autorise leur consultation que par les

David GARON

Signature du responsable de l'étude

personnes responsables de cette étude.

Fait à _____, le ____

Signature de l'enquêté

précédée de la mention "lu et approuvé"

LISTE DU MATERIEL A APPORTER

Matériel	Cocher la case après vérification
1 cahier d'observation	
1 feuille de consentement	
1 glacière	
2 pains de glace	
2 supports pour pompes et compteur	
6 pompes portatives	
6 cassettes pour pompes portatives	
2 compteur à particules	
2 sondes température et humidité pour compteur	
8 filtres PTFE 4,7 cm de diamètre	
8 tubes de 15 ml étiquetés pour filtres	
5 grands sacs congélation	
5 petits sacs congélation	
2 mètres laser	
2 rallonges multiprises de 20 m	
1 pince plate	
1 bombe air sec	
1 pissette d'éthanol 70%	
1 appareil photo	
1 batterie pour appareil photo	
1 carte mémoire pour appareil photo	
1 GPS	
1 escabeau	
1 lampe frontale	
1 lampe de chantier	
2 casques de chantier	
Scalpels stériles	
Pinces stériles	
Ecouvillons stériles	
Combinaisons	
Sur-chaussures	
Gants latex	
Masques	
Ruban adhésif	
Ciseaux	
Papier aluminium	
Essuie-tout	
Sacs poubelle	
Poubelle pour déchets biologiques	
Stylos / Marqueurs	
Modes d'emploi (pompes, compteurs,)	
Cartes précises des lieux	
Annuaire technique	
Cahiers d'observation et feuilles de consentement	
Filtres PTFE 4,7 cm	
Piles de rechange	
Sacs congélation	
Tubes de 15 ml	

VERIFICATION DU MATERIEL

Avant l'observation

- √ Vérifier la liste du matériel à apporter
- ✓ Conditionner les filtres
- ✓ Etiqueter les tubes de 15 ml
- ✓ Mettre en charge les pompes portatives et les compteurs à particules
- ✓ Mettre en charge les batteries de l'appareil photo
- √ Régler le débit des pompes à 2 l/min
- ✓ Vérifier l'étalonnage des pompes (compléter le tableau ci-dessous)

Identification de la pompe	Date	Nom de l'observateur	Moyenne sur 5 mesures pour un débit théorique de 2l/min
Α			
В			
С			
D			
E			
F			

Après l'observation

- ✓ Remettre en charge les pompes et les batteries de l'appareil photo
- ✓ Vérifier l'étalonnage des pompes (compléter le tableau ci-dessous)

Identification de la pompe	Date	Nom de l'observateur	Moyenne sur 5 mesures pour un débit théorique de 2l/min
Α			
В			
С			
D			
E			
F			

- ✓ Mettre les filtres dans les tubes de 15 ml étiquetés
- ✓ Compter, conditionner et stocker les matrices prélevées (compléter le tableau p 25)
- ✓ Compter, conditionner et stocker les filtres (compléter le tableau p 25)
- √ Décharger la carte mémoire de l'appareil photo
- ✓ Transférer les données des compteurs (comptage, température, humidité)
- ✓ Désinfecter le matériel (pompes, cassettes, compteurs, canules, pinces, ...)
- ✓ Vérifier et signer le questionnaire d'observation

Le jour de l'observation

- ✓ Noter l'heure d'arrivée sur le lieu d'habitation
- √ Faire remplir les feuilles de consentement
- ✓ Installer et démarrer les pompes portatives et les compteurs à particules
- ✓ Noter l'heure de démarrage des appareils de prélèvements
- ✓ Compléter la première partie du questionnaire : habitations, habitant(s)
- √ Faire les photographies (au minimum) :
 - de l'habitation dans son ensemble
 - des détails de l'habitation (fondation, travaux, ...)
 - des pièces enquêtées dans leur ensemble
 - des points de contamination
 - de la position des appareils de prélèvements dans les pièces enquêtées
- ✓ Effectuer les prélèvements de matériaux contaminés (bois, papiers peints, ...)
- ✓ Arrêter les pompes portatives et les compteurs à particules
- √ Noter l'heure d'arrêt des appareils de prélèvements
- ✓ Emballer les cassettes dans du papier aluminium ; les stocker dans la glacière
- ✓ Désinfecter le matériel (pompes, compteurs, tuyaux, ...)
- ✓ Emballer les déchets dans la poubelle pour déchets biologiques
- √ Finir de remplir le questionnaire et prendre des photos complémentaires
- ✓ Noter l'heure de départ du lieu d'habitation

QUESTIONNAIRE HABITANT(S)

Individu n°1	
N°de l'habitation : //_/	
Type: 0 Aucun 1 Habitant 2 Intervenant extérieur	
Type: O Aucun	
Exposition professionnelle ayant un impact possible sur la santé	
Exposition professionnene dyant an impact possible sur la sante	
Occupation de l'habitation Année de début d'occupation de l'habitation : //_/ Durée quotidienne d'occupation de l'habitation (moyenne approximative) : //_/ h Durée quotidienne d'occupation des pièces étudiées (moyenne approximative) : Pièce 1 (contamination par la mérule apparente) : //_/ h Pièce 2 (pas de contamination apparente) : //_/ h	
Tabagisme	
Fumeur : 0 Non 1 Oui Nombre de cigarettes par jour : //_/ Année de début du tabagisme : //_/_/ Tabagisme dans l'habitation : 0 Non 1 Oui	
Animaux	
Animaux : 0 Non 1 Oui	
Si oui, lesquels et combien ?	
Présence dans la maison : 0 Non 1 Oui	
Si oui, lesquels et combien ?	

^{*} Ces informations ne figureront pas dans les fichiers informatiques analysés.

Santé					
Maladie grave : 0 No	n 1 Oui				
_	diagnostic ///	′/Maladie:			
J. Jan, a	a.agou.o , <u></u>				
Consultation(s) médi	cale(s) durant l'année	e écoulée : 0 Non	1 Oui		
Si oui,	()		_		
Mois			Poice	on de la	
ou saison	Année	Fréquence		ultation	Diagnostic
Allergie(s) : 0 Non	_				
Si oui, depuis?	_ <i>/ </i>	Préciser :			
Médicaments pris du	rant le mois écoulé :	0 Non 1 Oui			
Si oui, lesquels?					
	aa daga Uhahitatian i	ofootée evez veve	t:	a a	
Lors de votre présen		mestee, avez-vous			
Non-bound 4	Symptômes		Non	Oui	Nombre de jours
Nez bouché Larmoiements			0	1	
Mal de gorge					///
Mai de gorge			0	1	//_/ //_
			0	1 1	
Toux			0	1	
Toux Fièvre			0	1 1 1	
Toux	es		0 0 0	1	
Toux Fièvre Mal de tête			0	1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle			0 0 0 0	1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal			0 0 0 0 0 0	1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans le Syndrome grippal Sinusite			0 0 0 0 0 0	1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal Sinusite Sensation de malaise			0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal Sinusite Sensation de malaise Crise d'asthme			0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire			0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire Démangeaisons			0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire Démangeaisons Eruption cutanée			0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire Démangeaisons			0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	

ıbles du sommeil		O	1	///
es Préciser :		0	1	//_/
Votre médecin vous a-t-il demandé de faire prati 1 Oui	quer des exa	mens en l	ien avec d	es symptômes ? 🛭 Non
Si oui, lesquels ?				

Individu n°2
N°de l'habitation : //_/
Type : 0 Aucun 1 Habitant 2 Intervenant extérieur
Etat civil
Nom*:
Prénom(s)*:
Sexe : 1 Homme 2 Femme
Date de naissance : //_/ // // //
Commune de naissance :
N° de téléphone ou mobile* : /_/_/ // // // // //
Profession :
Exposition professionnelle ayant un impact possible sur la santé
Exposition professionnelle dyant un impact possible sur la sante
Occupation de l'habitation
Année de début d'occupation de l'habitation : //_/_/
Durée quotidienne d'occupation de l'habitation (moyenne approximative) : //_/ h
Durée quotidienne d'occupation des pièces étudiées (moyenne approximative) :
Pièce 1 (contamination par la mérule apparente) : //_/ h
Pièce 2 (pas de contamination apparente) : //_/ h
Tabagisme
Fumeur : 0 Non 1 Oui
Nombre de cigarettes par jour : //_/
Année de début du tabagisme : ///
Tabagisme dans l'habitation : 0 Non 1 Oui
Tabagisme dans mabitation. Di Non III Oui
Animaux
Animaux : 0 Non 1 Oui
Si oui, lesquels et combien ?
Présence dans la maison : 🛛 Non 🔃 1 Oui
Si oui, lesquels et combien ?

^{*} Ces informations ne figureront pas dans les fichiers informatiques analysés.

Si oui, année du diagnostic / / / Maladie : Consultation(s) médicale(s) durant l'année écoulée : Non 1 Oui Si oui, Mois ou saison Année Fréquence Raison de la consultation Diagnostic Allergie(s) : Non 1 Oui Si oui, depuis ? / / / Préciser : Médicaments pris durant le mois écoulé : Non 1 Oui Si oui, lesquels ? / / / / Préciser : Médicaments pris durant le mois écoulé : Non 1 Oui Si oui, lesquels ? / / / / / / / / / / / / / / / / / /	-	on 1 Oui				
Si oui, Mois ou saison	Si oui, année du	_	// Maladie :			
Mois ou saison Année Fréquence Raison de la consultation Diagnostic Allergie(s): ② Non ② Oui Si oui, depuis?/_/_/_/ Préciser: Médicaments pris durant le mois écoulé: ② Non ② Oui Si oui, lesquels? Lors de votre présence dans l'habitation infestée, avez-vous ressenti ces symptômes: Symptômes Non Oui Nombre de jours Nez bouché Larmoiements Nol ① 1 // Mal de gorge O 1 // Toux Fièvre O 1 /// Mal de tête Douleurs dans les muscles Douleurs dans la poitrine Besoin de cracher dans la journée Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire	Consultation(s) médi	cale(s) durant l'anné	e écoulée : 0 Non	1 Oui		
Allergie(s):	Si oui,					
Si oui, depuis ?/_// Préciser :		Année	Fréquence			Diagnostic
Si oui, depuis ?/_// Préciser :						
Si oui, depuis ?/_// Préciser :						
Si oui, depuis ?/_// Préciser :	Allered (a) Marie	W 0 ·				
Médicaments pris durant le mois écoulé : Non 1 Oui Si oui, lesquels ? Lors de votre présence dans l'habitation infestée, avez-vous ressenti ces symptômes : Symptômes Non Oui Nombre de jours						
Lors de votre présence dans l'habitation infestée, avez-vous ressenti ces symptômes : Symptômes Non Oui Nombre de jours	Si oui, depuis ? _	//	Preciser :			
Lors de votre présence dans l'habitation infestée, avez-vous ressenti ces symptômes : Symptômes Non Oui Nombre de jours	Médicaments pris du	rant le mois écoulé :	Non 1 Oui			
Lors de votre présence dans l'habitation infestée, avez-vous ressenti ces symptômes : Symptômes Non Oui Nombre de jours						
Symptômes Non Oui Nombre de jours Nez bouché 0 1 /_/_/ Larmoiements 0 1 /_/_/ Mal de gorge 0 1 /_/_// Toux 0 1 /_/_// Fièvre 0 1 /_/_// Mal de tête 0 1 /_/_// Douleurs dans les muscles 0 1 /_/_// Douleurs dans la poitrine 0 1 /_/_// Besoin de cracher dans la journée 0 1 /_/_// Syndrome grippal 0 1 /_/_// Sinusite 0 1 /_/_// Sensation de malaise 0 1 /_/_// Crise d'asthme 0 1 /_/_// Gêne respiratoire 0 1 /_/_//	Si oui, lesqueis :					
Symptômes Non Oui Nombre de jours Nez bouché 0 1 /_/_/ Larmoiements 0 1 /_/_/ Mal de gorge 0 1 /_/_// Toux 0 1 /_/_// Fièvre 0 1 /_/_// Mal de tête 0 1 /_/_// Douleurs dans les muscles 0 1 /_/_// Douleurs dans la poitrine 0 1 /_/_// Besoin de cracher dans la journée 0 1 /_/_// Syndrome grippal 0 1 /_/_// Sinusite 0 1 /_/_// Sensation de malaise 0 1 /_/_// Crise d'asthme 0 1 /_/_// Gêne respiratoire 0 1 /_/_//						
Symptômes Non Oui Nombre de jours Nez bouché 0 1 /_/_/ Larmoiements 0 1 /_/_/ Mal de gorge 0 1 /_/_// Toux 0 1 /_/_// Fièvre 0 1 /_/_// Mal de tête 0 1 /_/_// Douleurs dans les muscles 0 1 /_/_// Douleurs dans la poitrine 0 1 /_/_// Besoin de cracher dans la journée 0 1 /_/_// Syndrome grippal 0 1 /_/_// Sinusite 0 1 /_/_// Sensation de malaise 0 1 /_/_// Crise d'asthme 0 1 /_/_// Gêne respiratoire 0 1 /_/_//			<u>.</u>			
Symptômes Non Oui Nombre de jours Nez bouché 0 1 /_/_/ Larmoiements 0 1 /_/_/ Mal de gorge 0 1 /_/_// Toux 0 1 /_/_// Fièvre 0 1 /_/_// Mal de tête 0 1 /_/_// Douleurs dans les muscles 0 1 /_/_// Douleurs dans la poitrine 0 1 /_/_// Besoin de cracher dans la journée 0 1 /_/_// Syndrome grippal 0 1 /_/_// Sinusite 0 1 /_/_// Sensation de malaise 0 1 /_/_// Crise d'asthme 0 1 /_/_// Gêne respiratoire 0 1 /_/_//		aa dama libabitatian i				
Nez bouché 0 1 //_/ Larmoiements 0 1 //_/ Mal de gorge 0 1 //_/ Toux 0 1 //_/ Fièvre 0 1 //_/ Mal de tête 0 1 //_/ Douleurs dans les muscles 0 1 //_/ Douleurs dans la poitrine 0 1 //_/ Besoin de cracher dans la journée 0 1 //_/ Syndrome grippal 0 1 //_/ Sinusite 0 1 //_/ Sensation de malaise 0 1 //_/ Crise d'asthme 0 1 //_/_/ Gêne respiratoire 0 1 //_//	Lors de votre present	ce dans i naonanon i	nfootóa avaz valla	raccanti ac	o ovmotôn	000:
Larmoiements 0 1 /_/_/ Mal de gorge 0 1 /_/_/ Toux 0 1 /_/_/ Fièvre 0 1 /_/_/ Mal de tête 0 1 /_/_/ Douleurs dans les muscles 0 1 /_/_/ Douleurs dans la poitrine 0 1 /_/_/ Besoin de cracher dans la journée 0 1 /_/_/ Syndrome grippal 0 1 /_/_/ Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/ Crise d'asthme 0 1 /_/_/ Gêne respiratoire 0 1 /_/_/			nfestée, avez-vous			
Mal de gorge 0 1 /_/_/ Toux 0 1 /_/_/ Fièvre 0 1 /_/_/ Mal de tête 0 1 /_/_/ Douleurs dans les muscles 0 1 /_/_/ Douleurs dans la poitrine 0 1 /_/_/ Besoin de cracher dans la journée 0 1 /_/_/ Syndrome grippal 0 1 /_/_/ Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/ Crise d'asthme 0 1 /_/_/ Gêne respiratoire 0 1 /_/_/	Nez houché		nfestée, avez-vous	Non	Oui	
Toux 0 1 /_/_/ Fièvre 0 1 /_/_/ Mal de tête 0 1 /_/_/ Douleurs dans les muscles 0 1 /_/_/ Douleurs dans la poitrine 0 1 /_/_/ Besoin de cracher dans la journée 0 1 /_/_/ Syndrome grippal 0 1 /_/_/ Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/ Crise d'asthme 0 1 /_/_/ Gêne respiratoire 0 1 /_/_/			nfestée, avez-vous	Non 0	Oui 1	
Fièvre 0 1 /_/_/ Mal de tête 0 1 /_/_/ Douleurs dans les muscles 0 1 /_/_/ Douleurs dans la poitrine 0 1 /_/_/ Besoin de cracher dans la journée 0 1 /_/_/ Syndrome grippal 0 1 /_/_/ Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/ Crise d'asthme 0 1 /_/_/ Gêne respiratoire 0 1 /_/_/	Larmoiements		nfestée, avez-vous	Non 0 0	Oui 1 1	
Mal de tête 0 1 /_/_/ Douleurs dans les muscles 0 1 /_/_/ Douleurs dans la poitrine 0 1 /_/_/ Besoin de cracher dans la journée 0 1 /_/_/ Syndrome grippal 0 1 /_/_/ Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/ Crise d'asthme 0 1 /_/_/ Gêne respiratoire 0 1 /_/_/_/	Larmoiements Mal de gorge		nfestée, avez-vous	Non 0 0	Oui 1 1 1 1 1	nes : Nombre de jours
Douleurs dans les muscles 0 1 /_/_/ Douleurs dans la poitrine 0 1 /_/_/ Besoin de cracher dans la journée 0 1 /_/_/ Syndrome grippal 0 1 /_/_/ Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/_/ Crise d'asthme 0 1 /_/_/_/ Gêne respiratoire 0 1 /_/_/_/	Larmoiements Mal de gorge Toux		nfestée, avez-vous	Non 0 0 0	Oui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Besoin de cracher dans la journée 0 1 /_/_/ Syndrome grippal 0 1 /_/_/ Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/ Crise d'asthme 0 1 /_/_/ Gêne respiratoire 0 1 /_/_/	Larmoiements Mal de gorge Toux Fièvre		nfestée, avez-vous	Non 0 0 0 0	Oui	
Besoin de cracher dans la journée 0 1 /_/_/ Syndrome grippal 0 1 /_/_/ Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/ Crise d'asthme 0 1 /_/_/ Gêne respiratoire 0 1 /_/_/	Larmoiements Mal de gorge Toux Fièvre Mal de tête	Symptômes	nfestée, avez-vous	Non 0 0 0 0 0 0	Oui	
Sinusite 0 1 /_/_/ Sensation de malaise 0 1 /_/_/ Crise d'asthme 0 1 /_/_/ Gêne respiratoire 0 1 /_/_/	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle	Symptômes es	nfestée, avez-vous	Non	Oui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
Sensation de malaise 0 1 //_/ Crise d'asthme 0 1 //_/ Gêne respiratoire 0 1 //_/	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine	Symptômes es	nfestée, avez-vous	Non	Oui	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
Crise d'asthme 0 1 //_/ Gêne respiratoire 0 1 //_/	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l	Symptômes es	nfestée, avez-vous	Non 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Oui	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
Crise d'asthme 0 1 //_/ Gêne respiratoire 0 1 //_/	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal	Symptômes es	nfestée, avez-vous	Non 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Oui	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite	Symptômes es	nfestée, avez-vous	Non	Oui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
Démangeaisons n 1 / / /	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans le Syndrome grippal Sinusite Sensation de malaise	Symptômes es	nfestée, avez-vous	Non	Oui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal Sinusite Sensation de malaise Crise d'asthme	Symptômes es	nfestée, avez-vous	Non 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Oui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
Eruption cutanée 0 1 //_/	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans la Syndrome grippal Sinusite Sensation de malaise Crise d'asthme	Symptômes es	nfestée, avez-vous	Non 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Oui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
Troubles du sommeil 0 1 //_/	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire Démangeaisons	Symptômes es	nfestée, avez-vous	Non O O O O O O O O O O O O O O O O O O	Oui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/
Autres Préciser :	Larmoiements Mal de gorge Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans les Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire Démangeaisons Eruption cutanée	Symptômes es	nfestée, avez-vous	Non O O O O O O O O O O O O O O O O O O	Oui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nombre de jours /_/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/

Si oui, lesquels?

Individu n°3
N°de l'habitation : //_/
Type : 0 Aucun 1 Habitant 2 Intervenant extérieur
Etat civil
Nom*:
Sexe: 1 Homme 2 Femme
Date de naissance : //_/ // //
Commune de naissance :
N° de téléphone ou mobile* : //_/ // // // // // //
Profession :
F101e551011.
Exposition professionnelle ayant un impact possible sur la santé
Occupation de l'habitation
Année de début d'occupation de l'habitation : //_/_/
Durée quotidienne d'occupation de l'habitation (moyenne approximative) : //_/ h
Durée quotidienne d'occupation des pièces étudiées (moyenne approximative) :
Pièce 1 (contamination par la mérule apparente) : //_/ h
Pièce 2 (pas de contamination apparente) : //_/ h
1 1000 2 (pao de contamination apparente) : / 1
Tabagisme
Fumeur : 🛛 Non 🔃 Oui
Nombre de cigarettes par jour : //_/
Année de début du tabagisme : //_/_/
Tabagisme dans l'habitation : 🛛 Non 🔃 Oui
Animaux
Animaux : 0 Non 1 Oui
Si oui, lesquels et combien ?
Présence dans la maison : 0 Non 1 Oui
Si oui, lesquels et combien ?
* Ces informations ne figureront pas dans les fichiers informatiques analysés.

Maladie grave : 0 No	— -				
Si qui, appée du	n 1 Oui				
Si bui, ai li lee uu	diagnostic ///	/ / Maladie :			
,					
Consultation(s) médi	cale(s) durant l'anné	e écoulée : 🛭 Non	1 Oui		
Si oui,					
Mois	Ammán	F	Raise	on de la	Diamastia
ou saison	Année	Fréquence	cons	ultation	Diagnostic
		<u> </u>			
Allergie(s) : 0 Non	1 Oui				
_	/	Préciser ·			
Oi oui, depuis : _		160361			
Médicaments pris du	rant le mois écoulé :	Non 1 Oui			
Si oui, lesqueis :					
Lors de votre présen		nfestee, avez-vous r	essenti ce	es symptom	
Marila de C	Symptômes		Non	Oui	Nombre de jours
Nez bouché Larmoiements			0	1	/ / /
			\circ		/ <u></u>
Mal de gorge			0	1	
Mal de gorge Toux			O	1	''
Mal de gorge Toux Fièvre			0	1 1 1	
Toux			O	1	
Toux Fièvre	es		0 0 0 0	1 1 1 1	
Toux Fièvre Mal de tête			0 0 0	1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l			0 0 0 0 0	1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal			0 0 0 0 0 0	1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite			0 0 0 0 0	1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite Sensation de malaise			0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite Sensation de malaise Crise d'asthme			0 0 0 0 0 0	1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire			0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire Démangeaisons			0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire			0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	
Toux Fièvre Mal de tête Douleurs dans les muscle Douleurs dans la poitrine Besoin de cracher dans l Syndrome grippal Sinusite Sensation de malaise Crise d'asthme Gêne respiratoire Démangeaisons Eruption cutanée			0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	

QUESTIONNAIRE HABITATION

N° de l'habitation : //_/
Date de prélèvements : //_/ // //
Adresse de l'habitation* :
Commune :
Département :
Code INSEE : //_/ //
Numéro de téléphone* : //_/ // // // // // //
Occupation : 0 Inoccupée 1 Résidence secondaire 2 Occupée en permanence Nombre de personnes résidentes : //_/
Travaux en cours : 0 Non 1 Oui Si oui, descriptif des travaux :

Habitation	
Année de construction : //_/_/	
Immeuble : 1 Individuel 2 Mitoyen 3 Collectif	
Nombre d'étages : //_/	
Descriptif / Etat général :	
	N°
Assise: 1 Plain-pied 2 Vide sanitaire 3 Sous-sol	
Remarques (nature du sous-sol, perméabilité, barrière d'étanchéité, présence de terrass	e, drainage
évacuation des eaux telluriques, présence de végétation,):	
	N°
Matériaux de gros œuvre :	
Eléments: 1 Pierre 2 Brique pleine 3 Brique creuse 4 Agglo de béton	
5 Bois 6 Structure béton préfabriquée	
7 Autre, préciser :	
Mortier: 1 Terre 2 Chaux 3 Ciment 4 Inconnu	
Crépi extérieur : 0 Aucun 1 Chaux 2 Ciment	
3 Autre, préciser :	
Végétation sur les murs extérieurs : 0 Non 1 Oui Si oui, laquelle ?	
	N°
Descriptif / Etat général :	
	— N°

Toiture :	1 Terras	sse	2 Ardoise	3 Tuile mécanique	4 Tuile traditionnelle	
	5 Autre,	, préc	iser :			
Sous t	oiture : 0	Non	1 Oui			
Pare-p	oluie : 0 N	on	1 Oui			
Respi	rant : 0 No	on [1 Oui			
Descri	iptif / Etat	généi	ral:			
						N°
Charp	ente :		êne 1 Rés	sineux		
		3 Au	tre, préciser			
Descri	iptif / Etat	généi	ral :			
						N°
Isolati	on des co	mbles	s : 0 Non 1			
	iptif / Etat			<u>.</u>		
		J -				N°
Zinguerie	/ Evacua	tion c	des eaux plu	ıviales :		
	iptif / Etat					
		J				
						N°

Pièce 1. Contamination apparente par la mérule ou autre champignon lignivore

Affectation :	
Dimensions : Longueur : //_, // m	
Crépi intérieur : 0 Aucun 1 Plâtre 2 Plaque de plâtre 3 Autre, préciser :	
Rémontée d'eau capillaire : 🛛 Non 🛮 1 Oui	
Présence de salpêtre : 0 Non 1 Oui	
Isolation des murs : 0 Non 1 Oui	
Revêtement mural: 0 Aucun 1 Peinture 2 Papier peint 3 Papier plomb Respirant: 0 Non 1 Oui	
Descriptif / Etat général :	N _o
Sol: 1 chape béton 2 Terre ou sable 3 Dallage 4 Plancher 5 Autre, préciser :	
Revêtement : 0 Absence 1 Moquette 2 Linoleum 3 Parquet bois 4 Autre, préciser :	
Humidité du sol : 0 Non 1 Oui Descriptif / Etat général :	
	N°

Double vitrage : 0 Non 1 Oui	
Joints d'étanchéité : 0 Non 1 Oui	
Etanchéité à l'air et à l'eau : 0 Non 1 Oui	
Présence de grille d'aération : 0 Non 1 Oui	
Descriptif / Etat général :	
	N°
Ventilation : 1 Naturelle (statique) 2 Mécanique (dynamique)	
Chauffage: 1 Radiateur de chauffage central 2 Convecteur électrique 3 Cuisinière 4 Poêle à charbon 5 Cheminée ouverte 6 Insert 7 Par le sol Descriptif / Etat général :	
	No.
Historique des travaux antérieurs :	

Cocher	les point	s de prélè	vements	(matéria	ıx et appar	eillage)		
	·	•		`		0 /		

Pièce 2. Absence de contamination apparente par la mérule ou autre champignon

Affectation :	
Dimensions : Longueur : //_, // m	m
Crépi intérieur : 0 Aucun 1 Plâtre 2 Plaque de plâtre 3 Autre, préciser :	
Rémontée d'eau capillaire : 0 Non 1 Oui	
Présence de salpêtre : 🛛 Non 🔃 Oui	
Isolation des murs : 0 Non 1 Oui	
Revêtement mural: 0 Aucun 1 Peinture 2 Papier peint 3 Papier plomb Respirant: 0 Non 1 Oui	
Descriptif / Etat général :	N°
Sol: 1 chape béton 2 Terre ou sable 3 Dallage 4 Plancher 5 Autre, préciser :	
Revêtement : 0 Absence 1 Moquette 2 Linoleum 3 Parquet bois 4 Autre, préciser :	
Descriptif / Etat général :	
	N°

Double vitrage : 0 Non 1 Oui	
Joints d'étanchéité : 0 Non 1 Oui	
Etanchéité à l'air et à l'eau : 0 Non 1 Oui	
Présence de grille d'aération : 0 Non 1 Oui	
Descriptif / Etat général :	
	N°
Ventilation : 1 Naturelle (statique) 2 Mécanique (dynamique)	
Chauffage: 1 Radiateur de chauffage central 2 Convecteur électrique 3 Cuisinière 4 Poêle à charbon 5 Cheminée ouverte 6 Insert 7 Par le sol Descriptif / Etat général :	
	No.
Historique des travaux antérieurs :	

► Cocher les points de prélèveme	ents (materiaux et app	areiliage)	

Plan de la pièce (Mesures, descriptif de la contamination par la mérule ou autre champignon

POMPES

Pièce 1 : contamination mérule visible

Identification des pompes portatives	Heure de début	Heure de fin	Durée du prélèvement	
А				
В	//_/ h //_/ min	//_/ h //_/ min	//_/ min	
С				

Identification du compteur à particules	Piste d'enregistrement
1	//_/

Pièce 2 : contamination mérule non visible

Identification des pompes portatives	Heure de début	Heure de fin	Durée du prélèvement	
D				
E	//_/ h //_/ min	//_/ h //_/ min	//_/ min	
F				

Identification du compteur à particules	Piste d'enregistrement
2	<i>II_1</i>

CORIOLIS 10 min (300 l/min) : pièces 1 et 2 (changer la canne et l'entrée d'air entre les 2 pièces)

REMARQUES GENERALES

INVENTAIRE ET LOCALISATION

Filtres

		Nom de l'échantillon	Cocher la case si disponible	Stockage	Analyse	Pompe
		Filtres pour pompes portatives				
	7	Microbiologique //_/FM1			CFU	Α
Щ	뜻	Analytique //_/FA1			Mycotoxines	В
	IECI	Génotoxique //_/FG1			Ames	С
		Filtre pour compteur à particules	3			
		//FD1				

Stockage : Frigo pièce Muta (+4 $^{\circ}$); Frigo chambre froide (+4 $^{\circ}$); Congélateur pièce Muta (-20 $^{\circ}$); Congélateur chambre froide (-20 $^{\circ}$)

+ Coriolis 10 ml (stockage à +4℃) :	//	//I	FC1	
	/ /	/ /	FC1b	is

	Nom de l'échantillon	Cocher la case si disponible	Stockage	Analyse	Pompe
	Filtres pour pompes portatives				
7	Microbiologique //_/FM2			CFU	D
兴	Analytique //_/FA2			Mycotoxines	Е
ECE	Génotoxique //_/FG2			Ames	F
	Filtre pour compteur à particules	3			
	//_/FD2			Adduits	

Stockage : Frigo pièce Muta (+4 $^{\circ}$); Frigo chambre froide (+4 $^{\circ}$); Congélateur pièce Muta (-20 $^{\circ}$); Congélateur chambre froide (-20 $^{\circ}$)

+ Coriolis	10 m	l (stock	age à	+4℃):	//_/	FC2
		•			//_/	FC2bis

Prélèvements

	Nom de l'échantillon	Type de prélèvements	Localisation	Remarques
	//P001.1			
	//_/P002.1			
	//P003.1			
-	//_/P004.1			
円	//_/P005.1			
PIECE	//_/P006.1			
	//P007.1			
	//_/P008.1			
	//_/P009.1			
	//_/P010.1			

Stockage: Frigo pièce Muta (+4℃); Frigo chambre froide (+4℃); Congélateur pièce Muta (-20℃); Congélateur chambre froide (-20℃)

	Nom de l'échantillon	Type de prélèvements	Localisation	Remarques
	//P001.2			
	//P002.2			
	//P003.2			
7	//P004.2			
兴	//P005.2			
PIECE	//P006.2			
	//P007.2			
	//P008.2			
	//P009.2			
	//P010.2			

Stockage: Frigo pièce Muta (+4 $^{\circ}$); Frigo chambre froide (+4 $^{\circ}$); Congélateur pièce Muta (-20 $^{\circ}$); Congélateur chambre froide (-20 $^{\circ}$)

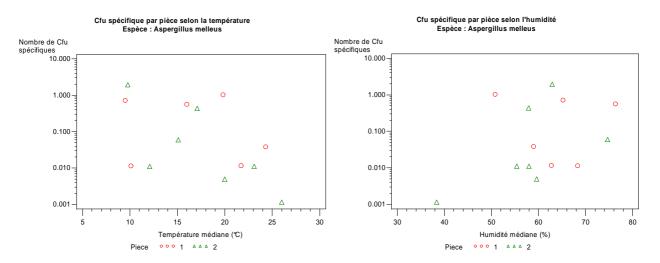
ANNEXE B : Températures et Humidités relatives (HR) mesurées dans les habitations.

Tableau A. Températures mesurées dans les pièces 1.

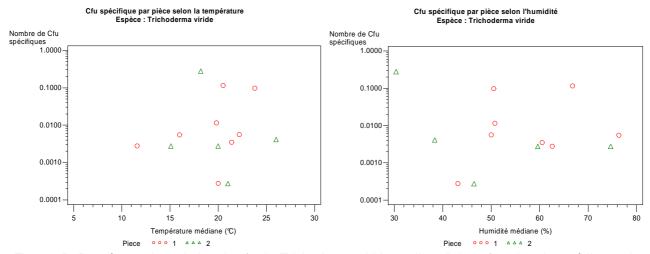
Habitat	Pièce	n mesures	moyenne	écart type	maximum	médiane	minimum
01	1	1908	10,7082	0,51162	11,5	10,8	9,7
02	1	1458	10,0454	1,44840	17,2	9,5	9,4
03	1	1785	19,5117	0,91140	20,8	19,8	15,8
04	1	1753	16,7300	0,18924	17,6	16,7	16,5
05	1	1797	21,1722	0,39572	21,6	21,4	20,3
06	1	1788	22,2279	0,35262	22,8	22,2	21,5
07	1	1830	21,5874	0,63307	22,6	21,3	20,8
08	1	2082	20,0533	0,51735	21,2	20,1	19,4
09	1	1806	21,1210	0,55301	21,7	21,4	19,8
10	1	1801	20,0378	1,12042	20,9	20,5	17,1
11	1	1813	10,3456	0,73096	14,5	10,1	9,9
12	1	1804	11,7481	0,49309	14,3	11,6	11,4
13	1	1802	19,8057	0,33254	20,4	20,0	19,2
14	1	1796	23,1036	0,20158	23,5	23,1	22,7
15	1	1792	21,8478	0,43838	23,9	21,7	21,5
16	1	1797	23,4638	0,78064	24,2	23,8	21,1
17	1	1814	23,9438	0,99377	25,1	24,3	21,3
18	1	1800	19,8772	0,56198	20,4	20,2	18,1
19	1	1907	16,1442	0,20467	16,7	16,0	16,0
20	1	1805	20,6861	0,58839	21,6	20,8	19,6

Tableau B. Températures mesurées dans les pièces 2.

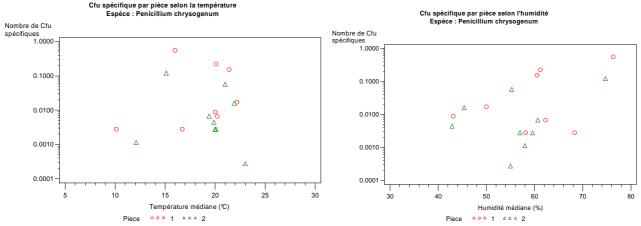
Habitat	Pièce	n mesures	moyenne	écart type	maximum	médiane	minimum
01	2	1946	9,4129	1,13625	14,1	9,0	8,4
02	2	1928	10,0100	0,27250	10,9	9,8	9,8
03	2	1810	16,7718	0,95326	17,9	17,1	13,3
04	2	1752	15,5890	0,15021	16,0	15,6	15,4
05	2	1801	19,1535	0,24646	19,4	19,3	18,5
06	2	1258	21,8521	0,46782	22,5	21,9	21,0
07	2	1821	20,2644	0,99353	21,9	20,1	18,3
08	2	2080	20,0803	0,68926	21,4	20,0	17,7
09	2	1813	20,6068	0,78536	21,4	21,0	19,1
10	2	1802	17,9713	0,57213	18,6	18,2	16,4
11	2	1822	12,1359	0,30629	14,0	12,1	11,8
12	2	1815	10,9994	0,58018	14,3	10,8	10,6
13	2	1802	19,7734	0,38899	20,3	19,9	19,0
14	2	1792	22,9472	0,15989	23,2	23,0	22,4
15	2	1802	25,5375	0,66161	26,3	26,0	24,6
16	2	1800	22,4900	0,81305	23,5	22,8	20,9
17	2	1819	23,0280	0,73464	24,0	23,1	21,0
18	2	1805	19,3105	0,30031	20,1	19,4	18,8
19	2	1916	15,2731	0,50778	18,3	15,1	15,0
20	2	1840	20,8255	0,52501	21,4	21,0	19,8

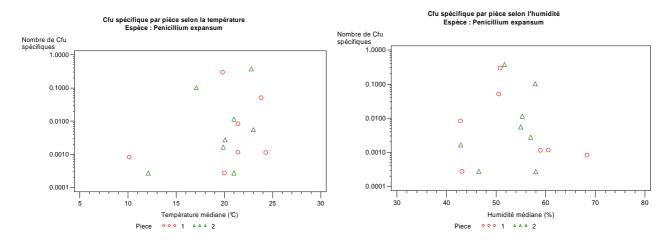

Tableau C. Humidités mesurées dans les pièces 1.

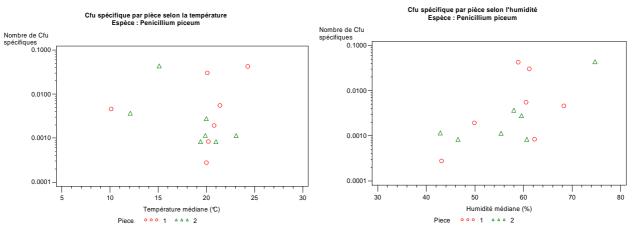
Habitat	Pièce	n mesures	moyenne	écart type	maximum	médiane	minimum
01	1	1908	42,8053	2,28162	49,1	42,4	39,6
02	1	1458	63,0224	5,44836	66,7	65,2	41,1
03	1	1785	50,9868	2,30374	62,8	50,8	47,8
04	1	1753	58,3982	1,08384	60,5	58,1	54,9
05	1	1797	43,1919	1,98727	47,6	42,8	40,5
06	1	1788	50,2966	0,83118	52,0	50,0	47,8
07	1	1830	56,9175	2,24210	61,8	56,1	54,0
08	1	2082	61,3235	1,66805	63,8	61,2	55,4
09	1	1806	61,0084	1,69037	65,2	60,5	58,6
10	1	1801	65,2468	4,23488	70,6	66,8	50,2
11	1	1813	66,9316	3,72636	69,0	68,3	48,9
12	1	1804	61,9048	2,43645	64,1	62,6	50,5
13	1	1802	43,1137	0,76972	45,2	43,1	41,4
14	1	1796	56,9781	1,51733	60,0	56,1	55,0
15	1	1792	62,1001	2,39633	66,3	62,7	53,9
16	1	1797	51,5080	2,20989	57,5	50,5	49,2
17	1	1814	59,9340	3,51079	68,3	58,9	55,9
18	1	1800	62,1683	1,87234	65,6	62,3	59,2
19	1	1907	75,7371	1,08600	77,0	76,3	73,1
20	1	1805	49,7313	1,55569	53,2	49,9	46,8

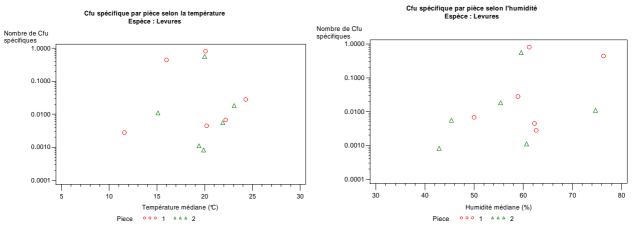

Tableau D. Humidités mesurées dans les pièces 2.

Habitat	Pièce	n mesures	moyenne	écart type	maximum	médiane	minimum
01	2	1946	43,0996	3,70998	48,1	44,2	31,9
02	2	1928	62,6741	1,53623	65,3	62,9	58,0
03	2	1810	58,4166	2,12257	68,0	57,9	55,8
04	2	1752	62,0150	0,68750	63,1	62,3	59,3
05	2	1801	51,6315	0,92432	53,6	51,6	49,9
06	2	1258	45,2696	1,29229	47,0	45,4	43,3
07	2	1821	58,1800	3,45512	65,9	57,0	53,6
08	2	2080	59,0264	1,72619	64,5	59,6	55,2
09	2	1813	56,6256	3,05252	62,5	55,3	53,6
10	2	1802	30,7563	1,35348	35,7	30,4	29,2
11	2	1822	57,4317	1,69766	58,7	58,0	49,3
12	2	1815	65,3752	2,97637	67,7	66,3	50,7
13	2	1802	43,4181	1,64166	47,1	42,9	41,5
14	2	1792	55,8121	1,32641	60,7	55,0	54,6
15	2	1802	39,6511	4,85200	48,2	38,4	31,0
16	2	1800	51,9828	1,10695	54,7	51,7	50,1
17	2	1819	57,0117	2,89800	67,2	55,4	53,7
18	2	1805	60,6834	1,68160	64,6	60,7	55,4
19	2	1916	74,5247	2,59047	77,0	74,7	61,5
20	2	1840	46,5668	1,09928	49,5	46,5	45,1


ANNEXE C : Etude des conditions physiques (température, humidité) sur les espèces fongiques quantifiées.


Figures A. Représentations du log de cfu d'*Aspergillus melleus* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.


Figures B. Représentations du log de cfu de *Trichoderma viride* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.


Figures C. Représentations du log de cfu de *Penicillium chrysogenum* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

Figures D. Représentations du log de cfu de *Penicillium expansum* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

Figures E. Représentations du log de cfu de *Penicillium piceum* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

Figures F. Représentations du log de cfu de levures par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

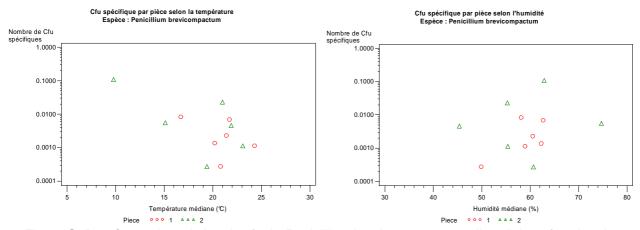
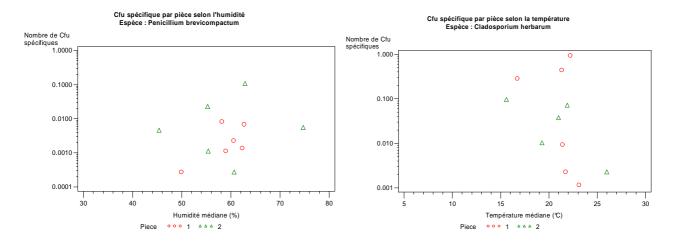
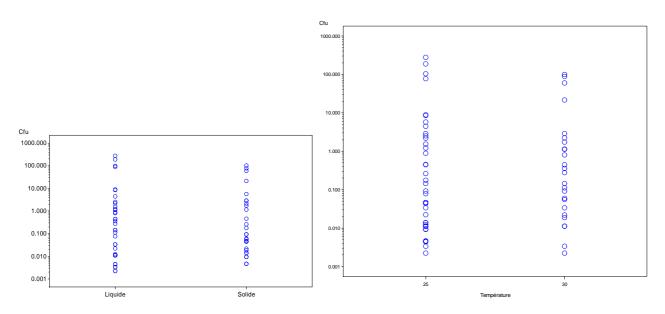
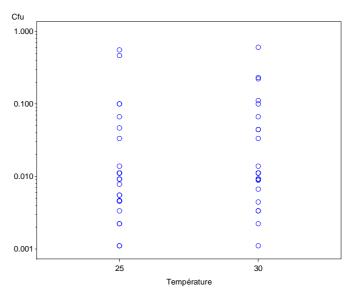
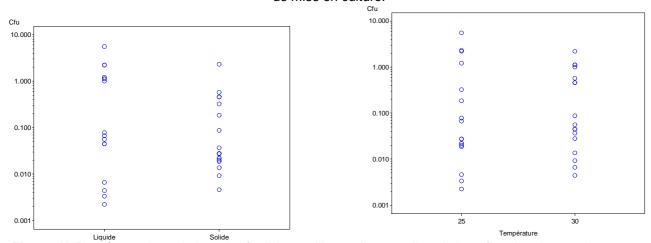
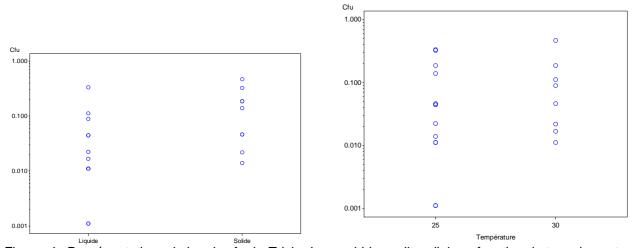




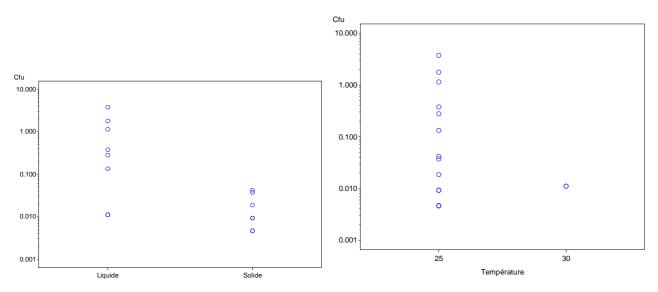
Figure G. Représentations du log de cfu de *Penicillium brevicompactum* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

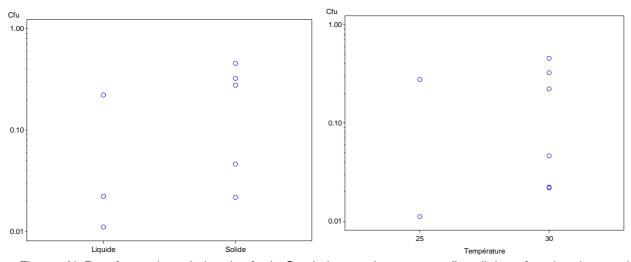
Figures H. Représentations du log de cfu de *Cladosporium herbarum* par litre d'air en fonction des médianes de température et d'humidité dans les habitations 1 à 20.

ANNEXE D : Etude des conditions expérimentales (type de capteur, température de croissance) sur les espèces fongiques quantifiées.

Figures I. Représentations du log de cfu d'*Aspergillus versicolor* par litre d'air en fonction du type de capteur et de la température de mise en culture.


Figure J. Représentation du log de cfu d'*Aspergillus fumigatus* par litre d'air en fonction de la température de mise en culture.


Figures K. Représentations du log de cfu d'*Aspergillus melleus* par litre d'air en fonction du type de capteur et de la température de mise en culture.

Figures L. Représentations du log de cfu de *Trichoderma viride* par litre d'air en fonction du type de capteur et de la température de mise en culture.

Figures M. Représentations du log de cfu de *Cladosporium herbarum* par litre d'air en fonction du type de capteur et de la température de mise en culture.

Figures N. Représentations du log de cfu de *Stachybotrys chartarum* par litre d'air en fonction du type de capteur et de la température de mise en culture.

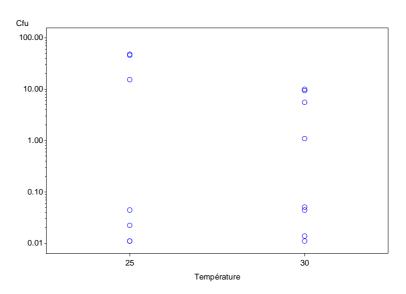


Figure O. Représentation du log de cfu d'*Aureobasidium pullulans* par litre d'air en fonction de la température de mise en culture.

ANNEXE E : Recherche de l'activité mutagène à partir des bioaérosols.

Tableau A. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 1.

	. Resultats au						<u> </u>				
S9 mix	Dilustia a /b a ft a		TA 98			TA 100			TA 102		
	Dilution/boîte		Nb ants/bte ^a Ratio ^b			Nb		Nb			
		réverta	ants/bte ^a	Ratio	révert	tants/bte	Ratio	révert	ants/bte	Ratio	
+	TRS	46	4,8		121	6,8		351	14,2		
	témoin +	354		7,70							
	pure	53	2,5	1,15	100	13,4	0,83	387	34,4	1,10	
	0,5	70	5,4	1,52	110	5,9	0,91	367	17,3	1,05	
	0,25	71	6,3	1,54	122	7,1	1,01	318	21,3	0,91	
-	TRS	61	4,9		167	5,0		395	23,1		
	témoin +	750		12,3	1210		7,25	1900		4,81	
	pure	65	4,3	1,07	181	5,9	1,08	445	11,9	1,13	
	0,5	77	4,5	1,26	186	15,0	1,11	398	40,3	1,01	
	0,25	69	8,6	1,13	214	33,2	1,28	368	7,8	0,93	

^a Moyenne et écart type

Tableau B. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 1.

S9 mix		TA 98				TA 100		TA 102		
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	32	32 6,0		151	9,7		322	15,4	
	témoin +	303		9,47						
	pure	26	2,0	0,81	170	9,0	1,13	327	47,8	1,02
	0,5	29	7,0	0,91	144	9,9	0,95	362	25,2	1,12
	0,25	26	3,3	0,81	149	5,9	0,99	332	14,4	1,03
-	TRS	27	3,7		173	4,3		284	20,8	
	témoin +	750		27,8	1224		7,08	1049		3,69
	pure	30	7,4	1,11	200	15,2	1,16	306	19,3	1,08
	0,5	25	0,9	0,94	193	15,7	1,12	295	11,6	1,04
	0,25	30	2,5	1,11	217	8,6	1,25	316	11,1	1,11

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA 100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau C. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 3.

S9 mix			TA 98			TA 100		TA 102		
	Dilution/boîte		Nb révertants/bte ^a I		Nb révertants/bte		Ratio		Nb ants/bte	Ratio
+	TRS	34			95	10,3		363	16,7	
	témoin +	239		7,03						
	pure	40	4,2	1,18	102	20,5	1,07	369	6,9	1,02
	0,5	33	4,5	0,97	117	7,8	1,23	347	14,6	0,96
	0,25	27	3,4	0,79	115	5,4	1,21	343	13,0	0,94
-	TRS	22	5,6		113	11,8		391	33,8	
	témoin +	1050		47,73	1468		12,99	1663		4,25
	pure	28	6,9	1,27	118	8,2	1,04	434	9,5	1,11
	0,5	19	4,8	0,86	115	4,5	1,02	406	5,2	1,04
	0,25	20	2,2	0,91	125	4,5	1,11	400	6,5	1,02

^a Moyenne et écart type

Tableau D. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 3.

Tableau D. Resultats du test d'Ames avec i extrait de intre issu de la piece 2 de l'habitation 5.										
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	29	3,3		112	8,2		338	17,1	
	témoin +	454		15,66						
	pure	33	8,4	1,14	109	7,0	0,97	325	8,8	0,96
	0,5	31	2,5	1,07	113	13,8	1,01	339	8,3	1,00
	0,25	31	10,2	1,07	111	17,6	0,99	339	10,6	1,00
-	TRS	27	6,9		118	10,5		350	16,1	
	témoin +	1061		39,30	1004		8,51	1142		3,26
	pure	20	2,2	0,74	118	10,6	1,00	339	18,5	0,97
	0,5	19	2,8	0,70	125	13,4	1,06	363	12,5	1,04
	0,25	24	8,1	0,89	128	4,3	1,08	355	13,9	1,01

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau E. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 4.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb révertants/bte ^a R		Nb révertants/bte		Ratio		Nb ants/bte	Ratio
+	TRS	44	44 2,2		123	7,1		218	32,4	
	témoin +	288		6,55						
	pure	62	5,3	1,41	114	12,6	0,93	187	13,7	0,86
	0,5	61	5,0	1,39	119	17,5	0,97	219	25,0	1,00
	0,25	62	4,3	1,41	136	10,8	1,11	213	4,5	0,98
-	TRS	38	94,0		119	4,5		360	12,3	
	témoin +	1425		37,50	1357		11,40	1439		4,00
	pure	40	5,4	1,05	155	57,8	1,30	361	3,3	1,00
	0,5	37	3,7	0,97	119	8,4	1,00	344	54,9	0,96
	0,25	39	0,8	1,03	120	8,6	1,01	357	38,3	0,99

^a Moyenne et écart type

Tableau F. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 4.

Tabicau F	. Resultats du t	cst u Am	cs avec i c	All all u	de mire issu de la piece 2 de l'habitation 4.						
S9 mix			TA 98			TA 100		TA 102			
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio	
+	TRS	25	2,9		133	12,7		369	13,7		
	témoin +	454		18,16							
	pure	25	3,6	1,00	112	6,8	0,84	348	36,8	0,94	
	0,5	17	4,8	0,68	122	3,3	0,92	355	10,4	0,96	
	0,25	25	1,4	1,00	121	16,1	0,91	362	9,6	0,98	
-	TRS	22	0,5		105	8,3		318	18,2		
	témoin +	551		25,05	1134		10,80	821		2,58	
	pure	18	18,3	0,82	113	7,4	1,08	313	18,4	0,98	
	0,5	21	3,7	0,95	105	1,3	1,00	367	11,0	1,15	
	0,25	23	1,3	1,05	128	18,2	1,22	351	14,1	1,10	

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau G. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 5.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb révertants/bte ^a			Nb révertants/bte		Nb révertants/bte		Ratio
+	TRS	26			100	11,0		285	34,0	
	témoin +	579		22,27						
	pure	33	7,0	1,27	115	15,0	1,15	296	51,0	1,04
	0,5	36	3,0	1,38	116	6,0	1,16	274	59,0	0,96
	0,25	29	10,0	1,12	104	3,0	1,04	259	54,0	0,91
-	TRS	28	5,7		123	11,3		351	4,9	
	témoin +	1571		56,11	1135			938		
	pure	21	7,0	0,75	160	16,0	1,30	296	28,0	0,84
	0,5	21	3,0	0,75	122	14,0	0,99	307	17,0	0,88
	0,25	26	4,0	0,93	144	1,0	1,17	261	19,0	0,74

^a Moyenne et écart type

Tableau H. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 5

Tabicau II	. Resultats du	icsi u An	ics avec 1 t	cati ait u	de filtre issu de la piece 2 de l'habitation 5.					
S9 mix			TA 98			TA 100		TA 102		
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	35	5,9		120	13,1		451	32,3	
	témoin +	579		16,40						
	pure	40	8,2	1,14	108	3,6	0,90	397	2,2	0,88
	0,5	30	11,8	0,85	92	5,6	0,77	439	10,0	0,97
	0,25	27	6,9	0,75	90	1,0	0,75	370	40,4	0,82
-	TRS	28	5,7		123	11,3		351	4,9	
	témoin +	1571		56,11	1019			938		
	pure	33	2,1	1,17	142	7,1	1,15	353	36,1	1,01
	0,5	23	3,3	0,82	137	31,3	1,11	354	17,9	1,01
	0,25	26	6,8	0,92	147	16,3	1,20	354	24,2	1,01

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau I. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 6.

S9 mix			TA 98			TA 100		TA 102		
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio	Nb révertants/bte		Ratio
+	TRS	17	2,4		61	4,6		259	7,6	
	témoin +	656	1,4	38,59						
	pure	20	0,8	1,18	57	8,3	0,93	246	6,2	0,95
	0,5	23	1,3	1,35	54	1,3	0,89	241	15,3	0,93
	0,25	20		1,18	62	20,9	1,02	215	6,3	0,83
-	TRS	26	6,3		105	7,4		266	3,9	
	témoin +	1712		65,85	1106		10,53	1344		5,05
	pure	18	4,6	0,69	111	9,0	1,06	318	15,3	1,20
	0,5	19	4,2	0,73	121	5,7	1,15	347	4,5	1,30
	0,25	23	4,2	0,88	115	2,2	1,10	281	73,0	1,06

^a Moyenne et écart type

Tableau J. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 6.

Tabicau J.	Resultats du t	tst u Ann	cs avec i c	Atl alt u	c muc is	ssu uc ia p	icce 2 uc	i navitati	on o.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	47	7,9		133	9,0		294	4,9	
	témoin +	694		14,77						
	pure	35	2,8	0,74	132	5,7	0,99	275	40,8	0,94
	0,5	38	6,5	0,81	138	8,0	1,04	299	18,2	1,02
	0,25	35	7,4	0,74	137	3,3	1,03	306	18,4	1,04
-	TRS	38	4,7		158	12,7		344	10,2	
	témoin +	1367		35,97	1215		7,69	1307		3,80
	pure	30	11,1	0,79	168	12,0	1,06	376	9,5	1,09
	0,5	44	13,9	1,16	164	4,0	1,04	390	24,5	1,13
	0,25	58	3,6	1,53	152	12,7	0,96	422	17,2	1,23

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau K. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 7.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	31	5,0		99	4,5		245	6,2	
	témoin +	570		18,38						
	pure	37	2,1	1,19	98	8,2	0,99	256	3,1	1,04
	0,5	26	3,7	0,83	107	2,2	1,08	247	19,6	1,01
	0,25	33	1,4	1,06	106	6,5	1,07	256	2,8	1,04
-	TRS	20	3,1		97	13,1		280	5,7	
	témoin +	1126		56,30	900		9,27	910		3,25
	pure	28	3,8	1,40	111	12,1	1,14	264	21,6	0,94
	0,5	21	4,5	1,05	111	9,5	1,14	248	30,0	0,89
	0,25	24	5,7	1,20	107	9,8	1,10	252	25,1	0,90

^a Moyenne et écart type

Tableau L. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 7.

Tableau L	. Kesunats du t	est u Am	es avec i	extrait u	e mure i	ssu ue ia j	nece 2 uc	i navitat	ion 7.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	31	5,0		154	9,0		650	15,6	
	témoin +	759		24,48						
	pure	27	2,4	0,87	161	17,2	1,05	674	12,0	1,04
	0,5	24	2,2	0,77	154	4,5	1,00	668	18,8	1,03
	0,25	22	3,6	0,71	163	3,8	1,06	683	22,2	1,05
-	TRS	20	3,0		100	55		447	42,9	
	témoin +	2126		106,30	149		1,49	1692		3,78
	pure	20	2,1	1,00	209	5	2,09	558	107,8	1,25
	0,5	17	3,3	0,85	183	4	1,83	589	10,1	1,32
	0,25	18	0,8	0,90	233	85	2,33	670	38,1	1,49

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau M. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 8.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	36	5,1		156	14,0		186	3,7	
	témoin +	656		18,22						
	pure	37	4,3	1,03	160	4,0	1,03	186	21,2	1,00
	0,5	40	3,6	1,11	151	2,0	0,97	254	6,5	1,37
	0,25	33	2,1	0,92	175	6,0	1,12	273	23,9	1,47
-	TRS	27	4,0		103	17,4		246	17,7	
	témoin +	1363		50,48	1142		11,09	1112		4,52
	pure	25	5,3	0,93	109	9,3	1,06	236	3,7	0,96
	0,5	25	4,3	0,93	104	5,9	1,01	204	5,9	0,83
	0,25	26	2,6	0,96	113	7,0	1,10	186	6,6	0,76

^a Moyenne et écart type

Tableau N. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 8.

Tubleau II	. Resultats du t	Cot a min	cs avec i c	Atlan u	c muc i	ssu uc ia j	siece 2 di	i iiubitut	1011 0.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	37	1,6		118	9,9		483	21,2	
	témoin +	794		21,46						
	pure	38	9,0	1,03	129	4,2	1,09	483	15,6	1,00
	0,5	38	3,7	1,03	144	5,2	1,22	504	20,7	1,04
	0,25	35	4,1	0,95	132	12,7	1,12	479	13,1	0,99
-	TRS	28	3,4		146	1,2		478	3,9	
	témoin +	1456		52,00	1055		7,23	1218		2,55
	pure	47	7,5	1,68	140	14,7	0,96	484	9,8	1,01
	0,5	36	3,3	1,29	153	2,8	1,05	497	7,5	1,04
	0,25	37	3,4	1,32	128	15,6	0,88	470	30,1	0,98

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau O. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 9.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb révertants/bte ^a R			Nb tants/bte	Ratio	Nb révertants/bte		Ratio
+	TRS	34	6,5		130	17,7		617	18,1	
	témoin +	931		27,38						
	pure	34	4,1	1,00	131	3,7	1,01	625	20,1	1,01
	0,5	42	8,3	1,24	140	13,0	1,08	617	18,3	1,00
	0,25	42	2,8	1,24	140	12,8	1,08	621	25,8	1,01
-	TRS	27	3,1		143	12,0		573	40,0	
	témoin +	2249		83,30	1104		7,72	1758		3,07
	pure	25	1,7	0,93	127	2,2	0,89	605	16,7	1,06
	0,5	27	2,4	1,00	155	12,0	1,08	585	24,0	1,02
	0,25	26	2,2	0,96	138	3,4	0,97	558	2,2	0,97

Tableau P. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 9.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b		Nb tants/bte	Ratio	Nb révertants/bte		Ratio
+	TRS	23	2,9		138	22,2		538	1,9	
	témoin +	825		35,87						
	pure	26	2,6	1,13	136	6,6	0,99	585	27,7	1,09
	0,5	28	3,3	1,22	146	17,4	1,06	587	18,7	1,09
	0,25	28	2,4	1,22	148	15,9	1,07	547	16,2	1,02
-	TRS	27	3,1		132	15,6		519	12	
	témoin +	2249		83,30	928		7,03	1390		2,68
	pure	25	1,2	0,93	144	7,9	1,09	511	5,4	0,98
	0,5	29	2,8	1,07	159	12,8	1,20	485	33,9	0,93
	0,25	26	4	0,96	150	9,4	1,14	499	24,1	0,96

^a Moyenne et écart type

 ^a Moyenne et écart type
 ^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

[°] Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

^b Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau Q. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 10.

THOTOME &	. Itesuituts au						92000 2 0	<u> </u>	1011 101	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	55	10,5		139	0,5		558	8,7	
	témoin +	798		14,51						
	pure	54	4,6	0,98	141	13,5	1,01	557	0,5	1,00
	0,5	62	2,9	1,13	152	5,9	1,09	521	12,1	0,93
	0,25	50	6,6	0,91	145	18,0	1,04	518	23,5	0,93
-	TRS	17	1,9		160	14,0		498	38,4	
	témoin +	1566		92,12	1624		10,15	1885		3,79
	pure	14	2,2	0,82	161	2,6	1,01	602	26,6	1,21
	0,5	14	1,7	0,82	149	6,3	0,93	629	20,6	1,26
	0,25	12	9,1	0,71	153	10,2	0,96	566	61,3	1,14

^a Moyenne et écart type

Tableau R. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 10.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	27	5,4		156	5,2		589	28,8	
	témoin +	1218		45,11						
	pure	38	1,4	1,41	143	10,7	0,92	591	27,2	1,00
	0,5	38	4,9	1,41	149	13,2	0,96	593	19,6	1,01
	0,25	40	5,3	1,48	154	11,5	0,99	593	38,6	1,01
-	TRS	45	1,9		161	1,4		612	11,9	
	témoin +	1803		40,07	1047		6,50	1402		2,29
	pure	47	6,1	1,04	133	6,5	0,83	576	15,9	0,94
	0,5	37	4,8	0,82	153	6,9	0,95	545	18,6	0,89
	0,25	45	3,4	1,00	166	7,3	1,03	543	16,4	0,89

^a Moyenne et écart type

 $^{^{\}rm b}$ Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

^b Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau S. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 11.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	28	7,6		142	17,5		521	24,3	
	témoin +	653		23,32						
	pure	28	2,9	1,00	157	10,0	1,11	560	12,4	1,07
	0,5	29	0,5	1,04	139	19,9	0,98	532	20,6	1,02
	0,25	29	1,6	1,04	156	21,4	1,10	527	1,7	1,01
-	TRS	28	2,4		172	14,7		551	25,7	
	témoin +	2064		73,71	784		4,56	1539		2,79
	pure	26	1,2	0,93	149	12,6	0,87	538	21,8	0,98
	0,5	26	11,9	0,93	145	6,4	0,84	512	23,2	0,93
	0,25	26	1,7	0,93	172	3,7	1,00	522	15,2	0,95

^a Moyenne et écart type

Tableau T. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 11.

Tabicau I	. Resultats uu t	cst u Am	es avec i c	zati ait u	e mue i	ssu ue ia j	piece 2 ui	i nabitat	1011 11.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte	-	Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	34	4,7		196	14,9		546	19,4	
	témoin +	517		15,21						
	pure	36	0,9	1,06	182	12,3	0,93	526	5,8	0,96
	0,5	31	3,7	0,91	190	17,3	0,97	528	34	0,97
	0,25	33	3,7	0,97	179	4,7	0,91	567	39,2	1,04
-	TRS	27	3,1		198	9,7		498	13,4	
	témoin +	2249		83,30	1096		5,54	1920		3,86
	pure	27	5,1	1,00	196	7,9	0,99	559	17,8	1,12
	0,5	29	0,9	1,07	188	12,5	0,95	556	9	1,12
	0,25	22,3	4,5	0,83	184	16,1	0,93	537	41,9	1,08

^a Moyenne et écart type

^b Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau U. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 12.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio	Nb révertants/bte		Ratio
+	TRS	21	3,1		139	10,1		554	51,0	
	témoin +	716								
	pure	17	2,5	0,81	137	7,1	0,99	536	9,6	0,97
	0,5	18	1,7	0,86	138	11,9	0,99	534	22,9	0,96
	0,25	21	2,6	1,00	140	4,1	1,01	539	31,3	0,97
-	TRS	17	1,9		150	4,2		530	29,8	
	témoin +	1566		92,12	923		6,15	1625		3,07
	pure	14	2,2	0,82	152	10,4	1,01	542	6,2	1,02
	0,5	16	2,2	0,94	155	12,2	1,03	535	14,4	1,01
	0,25	16	1,2	0,94	134	20,7	0,89	549	18,2	1,04

^a Moyenne et écart type

Tableau V. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 12.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	28	3,1		155	4,2		480	7,4	
	témoin +	680		24,29						
	pure	36	7,4	1,29	155	9,1	1,00	451	19	0,94
	0,5	33	2,1	1,18	160	12,5	1,03	442	36	0,92
	0,25	27	4,1	0,96	159	9,4	1,03	458	6,8	0,95
-	TRS	21	1,2		155	8,1		455	11	
	témoin +	921		43,86	910		5,87	1527		3,36
	pure	22	3,7	1,05	149	13,5	0,96	424	6,5	0,93
	0,5	15	2,6	0,71	155	3,9	1,00	433	8,3	0,95
	0,25	27	1,2	1,29	145	5,8	0,94	424	9,7	0,93

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

 $^{^{\}rm b}$ Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 $\,>$ 2 TRS, TA 100 $\,>$ 1,6 TRS, TA 102 $\,>$ 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau W. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 13.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	17	7,7		121	5,0		469	26,2	
	témoin +	1185	2AF 0,5µg/bte	69,71						
	pure	19	6,4	1,12	112	3,1	0,93	429	48,6	0,91
	0,5	16	3,3	0,94	101	11,6	0,83	486	24,1	1,04
	0,25	13	4,2	0,76	121	10,5	1,00	460	7,8	0,98
-	TRS	21	1,9		129	5,4		435	20,0	
	témoin +	2455	2NF 2,5µg/bte	116,90	1072	NaN₃ 1,5µg/bte	8,31	1443	BuOOH 2µmol/bte	3,32
	pure	17	2,9	0,81	131	10,2	1,02	476	38,9	1,09
	0,5	21	5,9	1,00	112	13,1	0,87	473	33,0	1,09
	0,25	19	5,6	0,90	133	3,9	1,03	479	36,8	1,10

^a Moyenne et écart type

Tableau X. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 13.

Tableau A	. Resultats uu t	cst u Am	ics avec 1	All all u	c marc i	ssu uc ia j	sicce 2 ui	t i navitat	1011 15.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	13	1,41		96	1,41		491	11,47	
	témoin +	1729		133,00						
	pure	20	9,1	1,54	103	10,2	1,07	487	15,8	0,99
	0,5	43	2,62	3,31	109	11,47	1,14	473	30,58	0,96
	0,25	46	5,25	3,54	104	4,03	1,08	439	24,64	0,89
-	TRS	24	3,74		128	14,63		548	39,36	
	témoin +	1464		61,00	669		5,23	1962		3,58
	pure	20	4,966	0,83	130	13,2	1,02	551	60	1,01
	0,5	17	11,89	0,71	120	4,55	0,94	597	26,7	1,09
	0,25	21	3,09	0,88	146	3,56	1,14	666	35,78	1,22

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

 $[^]c$ Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 $\mu g/bte)$; TA 98 sans S9 : 2-nitro-fluorène (2,5 $\mu g/bte)$; TA 100 : azoture de sodium (1,5 $\mu g/bte)$; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

 $^{^{\}rm b}$ Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 $\,>$ 2 TRS, TA 100 $\,>$ 1,6 TRS, TA 102 $\,>$ 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau Y. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 14.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	112	30,4		116	3,09		556	23,85	
	témoin +	1720		15,36						
	pure	82	9,93	0,73	98	6,65	0,84	456	14,38	0,82
	0,5	100	10,84	0,89	104	10,84	0,90	464	50,29	0,83
	0,25	123	20,53	1,10	100	11,15	0,86	465	23,70	0,84
-	TRS	18	3,3		125	7,93		481	35,0	
	témoin +	1005		55,83	588		4,70	1940		4,03
	pure	13	0,0	0,72	125	9,88	1,00	512	37,71	1,06
	0,5	21	2,83	1,17	131	9,90	1,05	526	15,30	1,09
	0,25	18	0,82	1,00	133	12,83	1,06	579	56,40	1,20

^a Moyenne et écart type

Tableau Z. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 14.

Tabicau Zi	. Kesuitats uu t	cst u Am	cs avec 1 c	Atl alt u	c marc i	ssu ut ia p	nece 2 at	, i nabitat	1011 17.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	26	3,3		122	3,74		461	16,11	
	témoin +	1232		47,38						
	pure	22	3,27	0,85	106	1,7	0,87	429	19,95	0,93
	0,5	31	4,55	1,19	119	12,36	0,98	469	26,47	1,02
	0,25	27	3,3	1,04	104	9,27	0,85	443	39,2	0,96
-	TRS	18	3,3		128	13,12		416	15,41	
	témoin +	1941		107,83	570		4,45	1330		3,20
	pure	24	3,86	1,33	128	10,78	1,00	482	13,67	1,16
	0,5	20	3,86	1,11	141	8,22	1,10	459	14,52	1,10
	0,25	23	2,05	1,28	129	11,73	1,01	428	27,82	1,03

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau A2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 15.

S9 mix			TA 98			TA 100		TA 102			
	Dilution/boîte		Nb révertants/bte ^a F		Nb révertants/bte		Ratio	Nb révertants/bte		Ratio	
+	TRS	28	4,9		90	13,4		415	30,6		
	témoin +	1151		41,11							
	pure	23	4,6	0,82	80	45,4	0,89	438	28,8	1,06	
	0,5	21	2,1	0,75	96	4,0	1,07	482	24,6	1,16	
	0,25	21	4,9	0,75	110	13,0	1,22	466	12,3	1,12	
-	TRS	27	1,6		96	4,2		408	30,9		
	témoin +	2218		82,15	543		5,66	1534		3,76	
	pure	20	2,9	0,74	107	4,8	1,11	424	9,8	1,04	
	0,5	21	4,6	0,78	113	5,6	1,18	475	5,0	1,16	
	0,25	26	7,3	0,96	121	18,1	1,26	393	44,4	0,96	

^a Moyenne et écart type

Tableau B2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 15.

Tabicau D	2. Kesultats uu	test u Ai	nes avec i	CALI alt	ue mu e	issu ut ia	piece 2 c	ie i nabita	uon 15.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb révertants/bte ^a			Nb tants/bte	Ratio	Nb révertants/bte		Ratio
+	TRS	30	5,56		113	11,81		515	18,7	
	témoin +	1122		37,4						
	pure	25	4,55	0,8	121	10,53	1,07	444	25,2	0,86
	0,5	26	3,56	0,9	134	8,18	1,19	524	4,3	1,02
	0,25	26	2,94	0,9	125	12,5	1,11	535	13,8	1,04
-	TRS	30	1,7		118	1,25		481	37,7	
	témoin +	2037		67,90	623		5,28	1861		3,87
	pure	27	3,7	0,90	128	12,5	1,08	506	42,3	1,05
	0,5	23	3,7	0,77	128	1,63	1,08	497	13,0	1,03
	0,25	24	1,7	0,80	121	7,04	1,03	517	25,0	1,07

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau C2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 16.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	21	3,8		120	7,9		453	31,0	
	témoin +	779		37,10						
	pure	20	2,8	0,95	150	19,2	1,25	486	6,5	1,07
	0,5	27	5,4	1,29	151	7,5	1,26	455	20,4	1,00
	0,25	20	3,9	0,95	152	11,8	1,27	452	35,4	1,00
-	TRS	16	5,4		145	10,4		454	17,5	
	témoin +	1232		77,00	642		4,43	2581		5,69
	pure	20	3,9	1,25	152	1,7	1,05	466	27,2	1,03
	0,5	20	4,9	1,25	153	12,0	1,06	452	44,6	1,00
	0,25	23	5,7	1,44	157	13,1	1,08	534	17,2	1,18

^a Moyenne et écart type

Tableau D2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 16.

Tubicuu B	2. Resultats uu	test u 111	nes avec i	CALLAIL	uc muc	issu uc ia	piece 2	ic i iiubitt	tion io.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	17	2,62		122	12,9		290	35,8	
	témoin +	1025		60,3						
	pure	14	2,4	0,8	126	3,3	1,03	320	16,3	1,10
	0,5	19	2,8	1,1	121	13,8	0,99	318	16,0	1,10
	0,25	18	0,5	1,1	113	8,8	0,93	265	44,6	0,91
-	TRS	67	4,5		193	8,7		396	3,3	
	témoin +	2857		42,64	512		2,65	1436		3,63
	pure	78	10,3	1,16	219	12,0	1,13	431	22,1	1,09
	0,5	78	10,9	1,16	189	19,9	0,98	445	21,3	1,12
	0,25	91	7,3	1,36	219	13,6	1,13	469	21,1	1,18

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

Tableau E2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 17.

S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	50	5,0		122	4,1		375	26,2	
	témoin +	999		19,98						
	pure	37	2,4	0,74	140	6,5	1,15	434	6,1	1,16
	0,5	48	8,5	0,96	129	4,5	1,06	434	3,3	1,16
	0,25	48	7,1	0,96	133	3,1	1,09	389	25,7	1,04
-	TRS	32	1,3		102	4,7		372	23,7	
	témoin +	1584		49,50	671		6,58	1647		4,43
	pure	41	3,3	1,28	122	15,8	1,20	407	19,6	1,09
	0,5	39	2,2	1,22	120	11,7	1,18	397	15,1	1,07
	0,25	35	3,3	1,09	106	4,6	1,04	368	10,7	0,99

^a Moyenne et écart type

Tableau F2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 17

Tabicau F	2. Kesultats du	test u Al	nes avec i	CALLAIL	ue mue	issu ut ia	picce 2 c	ic i nabita	uon 17.	
S9 mix			TA 98			TA 100			TA 102	
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio
+	TRS	22	3,7		119	6,8		450	28,5	
	témoin +	783		35,59						
	pure	42	17,9	1,91	121	19,9	1,02	476	20,7	1,06
	0,5	22	4,5	1,00	121	15,7	1,02	467	18,2	1,04
	0,25	36	9,9	1,64	179	93,1	1,50	450	7,9	1,00
-	TRS	18	4,3		112	3,9		456	9,4	
	témoin +	1240		68,89	629		5,62	1767		3,88
	pure	25	4,9	1,39	122	4,6	1,09	454	29,9	1,00
	0,5	19	5,4	1,06	126	7,8	1,13	519	30,5	1,14
	0,25	40	7,7	2,22	179	52,1	1,60	499	37,2	1,09

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

 $^{^{\}rm b}$ Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 $\,>$ 2 TRS, TA 100 $\,>$ 1,6 TRS, TA 102 $\,>$ 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau G2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 18.

S9 mix			TA 98			TA 100		TA 102			
	Dilution/boîte		Nb révertants/bte ^a Ra		Nb révertants/bte		Ratio	Nb révertants/bte		Ratio	
+	TRS	27	6,2		131	11,1		363	16,2		
	témoin +	1206		44,67							
	pure	23	3,3	0,85	131	1,9	1,00	377	22,8	1,04	
	0,5	16	2,8	0,59	132	9,5	1,01	441	9,5	1,21	
	0,25	26	1,9	0,96	136	4,5	1,04	422	13,9	1,16	
-	TRS	27	4,2		156	55,4		356	28,4		
	témoin +	1325		49,07	751		4,81	1971		5,54	
	pure	20	4,7	0,74	148	5,7	0,95	402	16,9	1,13	
	0,5	27	9,0	1,00	139	12,1	0,89	424	16,7	1,19	
	0,25	28	7,9	1,04	122	7,1	0,78	33	33,2	0,09	

^a Moyenne et écart type

Tableau H2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 18.

Tableau H2. Resultats du test d'Ames avec l'extrait de intre issu de la piece 2 de l'habitation 16.											
S9 mix		TA 98			TA 100			TA 102			
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio	
+	TRS	39	9,5		134	8,6		489	31,1		
	témoin +	1186		30,41							
	pure	38	4,2	0,97	147	8,3	1,10	447	37,9	0,91	
	0,5	31	3,3	0,79	133	11,7	0,99	522	10,7	1,07	
	0,25	42	5,4	1,08	149	8,9	1,11	464	27,3	0,95	
-	TRS	18	5,4		134	7		477	12,5		
	témoin +	1194		66,33	676		5,04	1647		3,45	
	pure	21	5,9	1,17	143	2,2	1,07	479	21,8	1,00	
	0,5	22	4,1	1,22	135	11,5	1,01	542	40,9	1,14	
	0,25	25	5,4	1,39	148	5,3	1,10	565	25,7	1,18	

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

 $^{^{\}rm b}$ Ratio=nb revertants/TRS ; seuils de mutagénicité : TA 98 $\,>$ 2 TRS, TA 100 $\,>$ 1,6 TRS, TA 102 $\,>$ 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau I2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 19.

S9 mix		TA 98				TA 100		TA 102		
	Dilution/boîte			Nb ants/bte ^a Ratio ^b		Nb révertants/bte		Nb révertants/bte		Ratio
+	TRS	32	4,9		162	4,8		405	8,2	
	témoin +	1650		51,56						
	pure	28	5,1	0,88	162	8,2	1,00	476	33,9	1,18
	0,5	28	0,9	0,88	149	2,6	0,92	457	53,5	1,13
	0,25	30	2,9	0,94	140	10,3	0,86	449	9,4	1,11
-	TRS	22	0,8		120	7,9		457	13,4	
	témoin +	988		44,91	612		5,10	2082		4,56
	pure	35	2,8	1,59	139	12,3	1,16	486	12,0	1,06
	0,5	35	1,6	1,59	136	9,4	1,13	536	43,4	1,17
	0,25	28	2,2	1,27	144	5,6	1,20	598	48,6	1,31

^a Moyenne et écart type

Tableau J2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 19.

1 abicau 32	Tableau 32. Resultats du test d'Ames avec i extrait de intre issu de la piece 2 de l'habitation 19.										
S9 mix		TA 98			TA 100			TA 102			
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio	
+	TRS	11	6,1		95	12,3		305	7,7		
	témoin +	525		47,73							
	pure	13	1,3	1,18	96	17,6	1,01	346	23,7	1,13	
	0,5	18	0,8	1,64	108	20,0	1,14	354	10,3	1,16	
	0,25	15	1,6	1,36	95	19,3	1,00	381	21,1	1,25	
-	TRS	18	0,9		87	8,2		293	50,1		
	témoin +	1299		73,51	579		6,66	1461		4,99	
	pure	20	3,6	1,13	103	11,8	1,18	363	19,7	1,24	
	0,5	18	0,9	1,00	96	10,6	1,10	345	22,3	1,18	
	0,25	17	3,3	0,96	122	18,0	1,40	407	21,6	1,39	

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

Tableau K2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 1 de l'habitation 20.

S9 mix		TA 98			TA 100			TA 102		
	Dilution/boîte	Nb révertants/bte ^a		Ratio ^b	Nb révertants/bte		Ratio	Nb révertants/bte		Ratio
+	TRS	42	3,4		97	16,3		366	23,9	
	témoin +	497		11,83						
	pure	39	5,1	0,93	104	5,2	1,07	371	25,2	1,01
	0,5	41	12,9	0,98	105	5,8	1,08	374	17,3	1,02
	0,25	35	11,5	0,83	111	5,9	1,14	361	10,6	0,99
-	TRS	27	2,5		105	9,8		352	10,6	
	témoin +	2415		89,44	783		7,46	1607		4,56
	pure	29	5,3	1,07	100	3,8	0,95	343	18,2	0,97
	0,5	32	5,7	1,18	95	6,2	0,90	357	16,1	1,01
	0,25	26	1,9	0,96	92	4,1	0,88	359	11,6	1,02

^a Moyenne et écart type

Tableau L2. Résultats du test d'Ames avec l'extrait de filtre issu de la pièce 2 de l'habitation 20.

Tubicuu L	2. Resultats uu	test a m	iics avec i	CAULUIT	<u> </u>	ibbu uc iu	piece 2 c	ic i manita	tion 20.		
S9 mix		TA 98			TA 100			TA 102			
	Dilution/boîte		Nb ants/bte ^a	Ratio ^b		Nb tants/bte	Ratio		Nb ants/bte	Ratio	
+	TRS	26	3,1		97	15,2		411	28,1		
	témoin +	1621		62,35							
	pure	33	2,9	1,27	105	4,2	1,08	405	47,5	0,99	
	0,5	29	2,5	1,12	90	9,5	0,93	425	9	1,03	
	0,25	28	2,9	1,08	120	10,7	1,24	410	11,9	1,00	
-	TRS	26	2,5		101	8,4		377	16,5		
	témoin +	2302		88,5	790		7,8	1480		3,9	
	pure	35	3,3	1,35	110	3,3	1,09	376	12,4	0,99	
	0,5	28	3,3	1,08	98	2,6	0,97	379	7,1	1,01	
	0,25	30	10,4	1,15	102	16	1,01	404	24	1,07	

^a Moyenne et écart type

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μ g/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5 μ g/bte) ; TA100 : azoture de sodium (1,5 μ g/bte) ; TA 102 : terbutylhydropéroxyde (2 μ mol/bte)

^b Ratio=nb revertants/TRS; seuils de mutagénicité: TA 98 > 2 TRS, TA 100 > 1,6 TRS, TA 102 > 1,3 TRS

^c Témoins positifs : TA 98 avec S9 : 2-amino-fluorène (0,5 μg/bte) ; TA 98 sans S9 : 2-nitro-fluorène (2,5μg/bte) ; TA100 : azoture de sodium (1,5μg/bte) ; TA 102 : terbutylhydropéroxyde (2μmol/bte)

ANNEXE F: Fiche technique publiée par Bertin technologies.

www.coriolis-airsampler.com

Airborne wood rot fungi detection in houses damaged by Serpula lacrymans

D. Garon, J-Ph. Rioult, V. Séguin; ABTE EA 4651 Unit -ToxEMAC team, Caen Basse Normandie University, France

Cont∈xt

Since several years, outbreaks of wood decay fungi in homes are increased. Among this variety of fungi, Serpula lacrymans is considered as the most serious species because it causes severe damage in the built environment. Its mycelium can spread extensively on timber and other building materials, and fruiting bodies can grow and produce rusty red basidiospores (Fig.1). Although asthma due to the spores has been previously established, little is known about residents' exposure and potential health risks. To investigate the characteristics of this fungal contamination, bioaerosols were collected with the Coriolis μ from 40 rooms located in damaged houses.

- Coriolis µ, sterile cones and 15mL of sterile collection liquid (Bertin Technologies, Ref.05237-1-202).
- · Extraction kit for PCR.

- Sampling step: 300L/min. 10 min.
- Centrifugation and concentration.
- DNA extraction.
- PCR analysis.

Results

A total of 40 air samples were collected by Coriolis µ (Fig.2). Serpula lacrymans was detected in 12 samples. Other ligninolytic fungi were also identified from bioaerosols: Donkioporia expansa and Serpula himantioides, respectively in 7 and 1 samples. These results showed that several wood rotting species could be observed in damaged buildings.

Figure 1: Extensive spreading of Serpula lacrymans mycelium.

Figure 2: Air sampling with Coriolis µ in a monn

Acknowledgements:

The project Mycoaerotox was supported by a grant from the Ministère de l'Ecologie, du Développement Durable, des Transports et du Logement (MEDDTL and ADEME, program Primegual).

The Coriolis µ air sampler allowed the collection and identification of wood rot fungi in indoor air by PCR.

These data could be useful to assess human exposure to wood-rotting basidiomycetes associated with the built environment and could contribute to study the effect of indoor air quality on respiratory health.

contolis@bertin.fr

www.corle.is-airsemater.com | Phone: +33(0) 139 306 070 Fax: +33(0: 139 306 185

